Систематика элементарных частиц. Суперэлементарные частицы

Систематика элементарных частиц. Суперэлементарные частицы. Основная трудность, которая возникает при определении понятие элементарной частицы связано с тем, что в настоящее время таких частиц оказывается очень много значительно больше, чем атомов химических элементов.

Недавно были открыты частицы в 10 раз более тяжлые, чем протон, и приблизительно с такой же массой, как у ядра бора. Отчаявшись выявить какую либо иерархию в разрастающемся множестве равноэлементарных объектов, некоторые физики выдвинули идею бутстрапа шнуровки, или ядерной демократии, согласно которой каждая элементарная частица состоит из всех других частиц точнее, структура каждой элементарной частицы определяется взаимодействиями всех других частиц.

Однако эта идея не устраняет чувства удовлетворнности из за слишком большого числа наипростейших сущностей последовательная формулировка идеи бутстрапа, напоминающая чем то концепцию Демокрита приводит к выводу о бесконечном числе элементарных объектов. Структура микрообъектов в теории бутстрапа принимает относительный смысл что - то вроде особой системы координат, которую можно выбрать различным образом. Определение элементов структуры становится весьма неоднозначным.

Так как одну и туже частицу можно различными способами составить из других частиц. Более того, остатся неясным, можно ли вообще на этом пути сформулировать точную замкнутую систему уравнений, определяющую различные свойства, в том числе и структуру элементарных частиц. Теоретиками анализировались лишь очень грубые модели бутстрапа, учитывающие взаимосвязь всего двух трх сортов частиц, и, хотя в ряде случаев были получены обнадживающие качественные результаты, попытки их уточнения сразу же наталкиваются на огромные трудности.

Идею бутстрапа нельзя считать удовлетворительным решением проблемы наипростейших элементов. Значительно более плодотворным оказался путь объединения частиц в замкнутые группы мультиплеты, члены каждой из которых могут трактоваться как различные состояния одной и той же частицы. Руководящим принципом при этом служит выявление симметрий в свойствах различных частиц.

Такой групповой подход, использующий хорошо разработанный математический аппарат теории групп, является дальнейшим развитием формализма зарядовых изотопических мультиплетов. Большое значение имело открытие так называемой унитарной симметрии, позволившее объединить изотопические мультиплеты обычных и странных частиц в единые октеты и декаплеты. Учт спинов дал возможность построить ещ более сложные семейства частиц унитарные мультиплеты мезонов объединились в семейство, состоящее из 35 частиц 35 - плет, а октет и декаплет барионов в семейство из 56 элементов 56 - плет. Дальнейшее разработка систематики частиц связана с идеей кварков.

Выяснилось, что отдельные унитарные мультиплеты не являются совершенно изолированными друг от друга, а связаны строгими правилами симметрии. И самым поразительным было то, что эти правила предсказывали существование частиц с дробными электрическими зарядами кварков. Вот эти то частицы на современном уровне развития науки действительно можно считать самыми элементарными, потому что из них могут быть построены вс остальное взаимодействующие частицы иногда простым сложением, как атомные ядра из протонов и нейтронов, а иногда рассматривая их как возбужднные состояния уже построенных частиц и в то же время сами кварки нельзя построить из других элементарных частиц. В этом смысле кварки существенно отличаются от всех других частиц, среди которых, как уже отмечалось, невозможно выделить какие либо более элементарные строительные элементы.

Кварки можно рассматривать как следующий, более глубокий, суперэлементарный уровень организации материи и с точки зрения величины дефекта масс, то есть плотности из упаковки внутри протонов, мезонов и других менее элементарных объектов.

С позиции теории кварков структурный уровень элементарных частиц это область объектов, состоящих из кварков и антикварков и характеризуемых большим дефектом масс в отношении любых их распадов и виртуальных диссоциаций.

Вместе с тем, хотя кварк и является самой простейшей известной сегодня частицей, он обладает очень сложными свойствами. От всех других известных нам частиц кварк отличается не только дробным электрическим зарядом, но и дробным барионным числом. Среди других элементарных частиц он выглядит неким кентавром по своим свойствам он одновременно и мезон, и барион. Первоначально считалось, что кварк имеет три состояния два из них различаются лишь величиной электрического заряда, а в третьем состоянии кварк проявляется как странная частица.

Однако после открытия семейств шармированных очарованных частиц к трм состояниям кварка пришлось добавить четвртое шармом. На самом большом мире ускорителе протонов в Батавии, близ Чикаго, была обнаружена новая удивительная частица - -мезон. Его масса значительно превосходит массу нуклона, а свойства таковы, что его приходится рассматривать как слипшиеся кварк и антикварк. При этом приходится допустить, что кварк и антикварк обладают ещ одним, пятым по счту состоянием.

Для квантового числа, характеризующего это состояние, ещ нет даже общепринятого названия чаще всего его называют прелестью кварка или соответствующим английским термином бьюти. Пять квантовых степеней свободы кварка принято называть его ароматом некоторые авторы предпочитают говорить о пяти степенях вкуса кварка. Но и эти не исчерпывается перечень свойств кварка. Анализ экспериментальных данных привл к выводу, что каждый из пяти ароматов вкусов кварка имеет три цвета, то есть каждое из пяти состояний кварка расщеплено ещ на три независимых состояния, характеризуемых величиной специфического квантового числа цвета.

Цвет у кварка изменяется при испускании или поглощении им глюона кванта промежуточного поля, склеивающего кварки и антикварки в мезоны и барионы. Можно сказать, что глюонное поле это поле цвета, его кванты переносят цвет. Термин глюоны происходит от английского слова glue клей. В настоящее время идея суперэлементарных частиц кварков буквально пронизывают физику энергий.

С их помощью объясняется так много экспериментальных данных, что физику просто невозможно обойти без этих удивительных частиц, так же как, например, химику без атомов и молекул. По мнению большинства физиков, если кварки не существуют в природе как реальные объекты, то это само по себе являлось бы поразительной загадкой. И вместе с тем кварки никогда не наблюдались в чистом виде, хотя, с тех пор как они были введены в теорию, прошло почти два десятилетия.

Все многочисленные попытки обнаружить кварки или глюоны в свободном состоянии неизменно заканчиваются неудачей. Строго говоря, глюоны и кварки остаются пока хотя вероятными, но вс же гипотетическими объектами. В том, что кварки и глюоны это физические объекты, а не просто удобный феноменологический способ описания на привычном для нас корпускулярном языке каких то ещ непонятных аспектов структуры элементарных частиц, убеждают косвенные опыты. Прежде всего это эксперименты по зондированию протонов в нейтрон с помощью очень быстрых электронов и нейтрино, когда налетающая частица рассеивается отскакивает, сталкиваясь с одним из находящихся внутри частицы мишени кварков. С учтом кварков список сильно взаимодействующих суперэлементарных частиц сведтся к трм частицам кварку, антикварку и связывающему их глюону.

К ним следует добавить ещ приблизительно десяток наипростейших частиц других типов, структура которых пока ещ не проявляется в эксперименте квант электромагнитного поля фотон, уверенно предсказываемый теоретиками гравитон и семейство лептонов.

Заключение. За прошедшие года положение в теории элементарных частиц существенно изменилось. Были открыты слабые нейтральные токи, приводящие к таким эффектам, как рассеяние мюонного нейтрино на электронах. Открыты, начиная с J-мезона, целая группа элементарных частиц со временем жизни, в тысячу раз превышающим время жизни резонансов. Фактически уже сейчас нужно эти частицы включить в таблицу относительно стабильных элементарных частиц.

Значительны успехи в теории элементарных частиц. Единая теория слабых и электромагнитных взаимодействий получила солидное экспериментальное подтверждение, хотя по-прежнему не может считаться с несомненностью достоверной. Кварковая модель строения адронов получает вс новые и новые экспериментальные подтверждения. После многих лет застоя большой прогресс достигнут в теории сильных взаимодействий, которые теперь рассматриваются как межкварковые взаимодействия.

Очень вероятно, что подлинно элементарными частицами, неделимыми уже дальше, являются лептоны и кварки. Вс огромное множество адронов построено из кварков. Модель четырх цветных кварков и чтырх лептонов позволяет в общих чертах понять структуру материи. Учные вплотную подошли к решению новой проблемы, проблемы структуры элементарных частиц. При бомбардировке протонами высокой энергии неподвижной мишени обнаружены сверхтяжелые нейтральные мезоны, названные ипсилонами с массой порядка 9,4 ГэВ. Найдено три модификации этих мезонов с близкими массами.

Чтобы включить ипсилоны в рамки кварковой модели, надо предположить, что существуют кварки более массивные, чем с-кварк. Для сохранения кварк-лептонной симметрии требуется введение двух новых кварков, соответствующие паре -лептон, -нейтрино. Эти кварки уже получили наименование топ вершина по-английски и боттом дно. Итак, с увеличением энергии сталкивающихся частиц обнаруживается рождение новых вс более и более тяжлых частиц.

Это усложняет и без того непростую картину мира элементарных частиц. Появляются новые проблемы, хотя множество старых проблем остатся нерешнными. Вероятно, основной нерешнной проблемой следует считать проблему кварков могут ли они быть свободными или же пленение их внутри адронов является абсолютным. Если же кварки принципиально не могут быть выделены и обнаружены в свободном состоянии, то как убедиться, что они с несомненностью существуют Далее остатся недоказанным экспериментально существование промежуточных векторных бозонов W , W- и W0, столь необходимых для уверенности в справедливости единой теории слабых и электромагнитных взаимодействий.

Несомненно, что выяснение строения элементарных частиц будет представлять собой столь же значительный шаг, как и открытие строения атома и ядра.