Корпускулярная и континуальная концепции описания природы

Корпускулярная и континуальная концепции описания природы. Участвуя в выработке естественнонаучной или «физической» картины мира, естествознание главным образом своей теоретической частью (понятия, категории, законы, принципы, теории), а также разработкой приемов и методов научного исследования примыкает к философскому материализму.

С каждым этапом развития естествознания закономерно сменялась форма развития материализма в зависимости от естественнонаучных открытий. В целом ход развития естествознания это от созерцания природы (древность) через аналитическое расчленение (15-18 вв.), где получил метафизический взгляд на природу, к синтетическому воссозданию картины природы в ее всесторонности, целостности и конкретности (19-20 вв.). В центре современного естествознания до середины 20 в. стояла физика, искавшая способы использования атомной энергии и проникавшая в область микромира, в глубь атома, атомного ядра и элементарных частиц. Так например, физика дала толчок в развитии других отраслей естествознания – астрономии, космонавтики, кибернетики, химии, биологии, биохимии и других естественных наук. Физика вместе с химией, математикой и кибернетикой помогает молекулярной биологии решать теоретически и экспериментально задачи искусственного биосинтеза, способствует раскрытию материальной сущности наследственности.

Физика также способствует познанию природы химической связи, решению проблем космологии и космогонии. В последние годы начинает лидировать целая группа наук – молекулярная биология, кибернетика, микрохимия.

К современному естествознанию относятся концепции, возникшие в ней в ХХ веке. Но не только последние научные данные можно считать современными, а все те, которые входят в толщу современной науки, поскольку наука представляет собой единое целое, состоящее из разновременных по своему происхождению частей.

В отличие от классической механики исследования микрочастиц к началу XX века были в начальной стадии. Лишь в самом конце XIX века в результате серии экспериментов В. Крукса, Ж. Перрена, Дж. Дж. Томпсона и Ч. Вильсона был открыт электрон.

Результаты этих экспериментов показали, что электрон представляет собой микрочастицу, отрицательно заряженную, имеющую массу порядка 10~27 г (что примерно в 2000 раз меньше массы атома водорода), распространяющуюся в вакууме при отсутствии внешних полей прямолинейно и отклоняющуюся под действием электрического или магнитного полей. Такие свойства электрона находились в полном соответствии как с классической механикой, так и с классической электродинамикой.

В 1913 году Э. Резерфорд предложил планетарную модель атома с электронами, вращающимися вокруг атомного ядра, а Н. Бор сформулировал свои знаменитые постулаты, определяющие строение атома. При этом не возникало никаких сомнений, что этот новый и еще детально не изученный субатомный мир микрочастиц описывается законами классической механики. Единственный эксперимент тех лет вызывал недоумение — это эксперимент К. Дэвиссона 1921—1922 годов, в котором наблюдался процесс рассеяния электронов тонкими металлическими фольгами.

Было рассеяния достаточно узкого пучка достаточно монохроматических электронов классическая механика предсказывала, что электроны должны рассеиваться также в виде узкого пучка, направленного под определенным углом к падающему пучку. Предположили, что наблюдаемый эффект является результатом наличия неоднородностей на поверхности фольги . 2.