Коньюнктор.

 
 
+ А

 


+ В
АВ
&
(На какой вход необходимо подать сигнал, чтобы сигнал
был АВ?)

       
   
 
 


+

 

Пример: Гирлянда.

1) Если 1 лампочка не горит, то нет выходного сигнала).

2) В метро, пока все двери не закрыты, машинист не получит сигнал).

2. Дизъюнкция или логическое сложение – это объединение двух простых высказываний А и В в одно составное с помощью союза <или>. Составное высказывание будет истинно, если истинно хотя бы одно из входящих в него простых высказываний.

Обозначение:

А+В, АВ(или), А or В(логическая связка), АВ(объединение)

 

в теории множеств

 

 

Таблица истинности.

А В АВ
0 0

Реализация логического сложения - дизъюнктор.

(Параллельное соединение, пожарная сигнализация).

3. Инверсия – логическое отрицание – это присоединение частицы не или словосочетания не верно, что к высказыванию А.

(Сейчас идет урок. Проанализируйте. Сейчас не идет урок. Не верно, что сейчас идет урок).

Обозначения:

, А (приставка), not А

 
 


дополнение к множеству А

 

в теории множеств

 

Таблица истинности

А

Реализация логического отрицания – инвертор.

 
 
А


+

 

4. Дополнительные логические операции:

1) Импликация (логическое следование) – это операция, которая выражается связками

а) если А, то В

б) из А следует В.

Обозначения:

А→В, АВ ( импликация ложна, когда А-1, В-0 →0)

 

А В А→В

Пример:

Если идет дождь, то асфальт мокрый. (А – 0, А→В – 1)

импликация зависит от основных операций

 

3) Двойная импликация или равносильность или эквиваленция– это объединение простых высказываний а и В в словосочетании с помощью < тогда и только тогда>.

Обозначения:

А↔В, АВ, А=В, А~В.

Таблица истинности

А В А↔В

Формула взаимосвязи с основными операциями:

 
 
  А↔В = ( А+В) · (+А)