рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные физико-химические свойства масла.

Основные физико-химические свойства масла. - Конспект Лекций, раздел Философия, Конспект лекций. Лекция 1. Введение в предмет 1.3. Роль материалов в современной технике Из Основных Характеристик Масла Отметим, Что Оно Горючее, Биоразлагаемое, Пра...

Из основных характеристик масла отметим, что оно горючее, биоразлагаемое, практически не токсичное, не нарушающее озоновый слой. Плотность масла обычно находится в диапазоне (0.84-0.89)×103 кг/м3. Вязкость является одним из важнейших свойств масла. С позиций высокой электрической прочности желательно иметь масло более высокой вязкости. Для того, чтобы хорошо выполнять свои дополнительные функции в трансформаторах (как охлаждающая среда) и выключателях (как среда, где движутся элементы привода), масло должно обладать невысокой вязкостью, в противном случае трансформаторы не будут надлежащим образом охлаждаться, а выключатели- разрывать электрическую дугу в установленное для них время.

Поэтому выбирают компромиссное значение вязкости для различных масел. Кинематическая вязкость для большинства масел при температуре 20 °С составляет 28-30×10-6 м2/с.

Температурой застывания называется температура, при которой масло загустевает настолько, что при наклонении пробирки с охлажденным маслом под углом 45° его уровень останется неизменным в течение 1 мин. В масляных выключателях температура застывания имеет решающее значение. Свежее масло не должно застывать при температуре -45°С; в южных районах страны разрешается применять масло с температурой застывания -35°С. Для эксплуатационных масел допускается ряд отступлений от нормированной температуры застывания в зависимости от того, находится ли масло в трансформаторе или выключателе, работает в закрытом помещении или же на открытом воздухе. Для специальных арктических сортов масла температура застывания уменьшается до -(60-65) °С, однако при этом понижается и температура вспышки до 90-100°С.

Температурой вспышки называется температура нагреваемого в тигле масла, при котором его пары образуют с воздухом смесь, воспламеняющуюся при поднесении к ней пламени. Вспышка происходит настолько быстро, что масло не успевает прогреться и загореться. Температура вспышки трансформаторного масла не должна быть ниже 135°С. Если нагреть масло выше температуры вспышки, то наступает такой момент, когда при поднесении пламени к маслу оно загорается.

Температура, при которой масло загорается и горит не менее 5 сек., называется температурой воспламенения масла.

Температура, при которой происходит возгорание в закрытом тигле, в присутствии воздуха, без поднесения пламени, называется температурой самовоспламенения. Для трансформаторного масла она составляет 350-400 °С.

Из других теплофизических характеристик отметим сравнительно небольшую теплопроводность l от 0.09 до 0.14 Вт/(м×К), уменьшающуюся в зависимости от температуры. Теплоемкость, наоборот, увеличивается с ростом температуры от 1.5 кДж/(кГ×К) до 2.5 кДж/(кГ×К). Коэффициент теплового расширения масла определяет требования к размерам расширительного бака трансформатора и составляет примерно 6.5×10-4 1/К.

Удельное сопротивление масла нормируется при температуре 90°С и напряженности поля 0.5 МВ/м, и оно не должно превышать 5×1010 Ом×м для любых сортов масел. Отметим, что удельное сопротивление, как и вязкость, сильно падают с ростом температуры (более чем на порядок при уменьшении температуры на 50 °С). Диэлектрическая проницаемость масла невелика и колеблется в пределах 2.1-2.4. Тангенс угла диэлектрических потерь определяется наличием примесей в масле. В чистом масле он не должен превышать 2×10-2 при температуре 90°С и рабочей частоте 50 Гц. В окисленном загрязненном и увлажненном масле tgd возрастает и может достигать более чем 0.2. Электрическая прочность масла определяется в стандартном разряднике с полусферическими электродами диаметром 25.4 мм и межэлектродным расстоянием 2.5 мм. Пробивное напряжение должно составлять не менее 70 кВ, при этом в разряднике электрическая прочность масла будет не менее 280 кВ/см.

Существует большой разрыв между сроком службы трансформатора и сроком службы масла. Трансформатор может работать без ремонта 10-15 лет, а масло уже через год требует очистки, а через 4-5 лет - регенерации. Мерами, позволяющими продлить срок эксплуатации масла, являются:

1) защита масла от соприкосновения с наружным воздухом путем установки расширителей с фильтрами, поглощающими кислород и воду, а также вытеснение из масла воздуха;

2) снижение перегрева масла в условиях эксплуатации;

3) регулярные очистки от воды и шлама;

4) применение для снижения кислотности непрерывной фильтрации масла;

5) повышение стабильности масла путем введения антиокислителей.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций. Лекция 1. Введение в предмет 1.3. Роль материалов в современной технике

Конспект лекций... Лектор доцент кафедры электроснабжения и ресурсосбережения КТУ ТЫТЮК В К...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные физико-химические свойства масла.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Роль материалов в современной технике.
Материалы играют определяющую роль в техническом прогрессе. Выше мы рассматривали пример из области вычислительной техники, когда совершенствование материала и технологии изготовления элементов обо

Основное уравнение электропроводности.
Можно написать наиболее общую формулу, для плотности тока j, верную для любых сред, j = S ni·qi·Vi Здесь i - тип или cорт заряда, (например электр

Электропроводность газов
Газы обладают исключительно малой проводимостью. Это связано с очень низкой концентрацией носителей заряда. Появление носителей в газе происходит за счет ионизации нейтральных молекул под действием

Электропроводность жидкостей.
Современные представления о проводимости диэлектрических жидкостей состоят в следующем. Здесь носителями заряда являются ионы, т.к. электроны легко прилипают к нейтральным молекулам жидкости и не м

Диэлектрическая проницаемость.
Одной из важнейших характеристик диэлектриков, имеющей важнейшее значение для техники является его относительная диэлектрическая проницаемость ε. Эта величина предста

Электрическая прочность диэлектриков.
Диэлектрик, находящийся в электрическом поле, при определенном значении напряженности электрического поля теряет изоляционные свойства. Это явление носит название пробоя, а значение напряжен

Тепловые характеристики материалов.
К важнейшим тепловым свойствам диэлектриков относятся нагревостойкость, холодостойкость и тепловое расширение. Температура - это понятие, введенное для характеристики энергии, которой обла

Область применения и общие характеристики газообразных диэлектриков.
В числе газообразных диэлектриков, прежде всего, нужно упомянуть воздух, который помимо нашей воли входит в состав всех электротехнических устройств и оказывает свое влияние на их работу.

Область применения и общие характеристики жидких диэлектриков.
С электрофизической точки зрения наиболее важными характеристиками жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность. Диэлектрическая проницаем

Используемые и перспективные жидкие диэлектрики.
Наиболее распространенный в энергетике жидкий диэлектрик - это трансформаторное масло. Трансформаторное масло, - очищенная фракция нефти, получаемая при перегонке, кипящая при температуре

Конденсаторное и кабельное масла.
Из родственных трансформаторному маслу по свойствам и применению жидких диэлектриков стоит отметить конденсаторные и кабельные масла. Конденсаторные масла. Под этим термином объединена гру

Синтетические диэлектрические жидкости.
Второй тип жидких диэлектриков - трудногорючие и негорючие жидкости. Жидких диэлектриков с такими свойствами достаточно много. Наибольшее распространение в энергетике и электротехнике получили хлор

Общие характеристики твердых диэлектриков.
Твердые диэлектрики - это чрезвычайно широкий класс веществ, содержащий вещества с радикально различающимися электрическими, теплофизическими, механическими свойствами. Например, диэлектри

Виды диэлектриков. Применение твердых диэлектриков в энергетике.
Все диэлектрические материалы можно разделить на группы, используя разные принципы, например, разделить на неорганические и органические материалы. Неорганические диэлектрики: стекла, слюд

Полимерные материалы.
Полимеры, как правило, являются хорошими диэлектриками. Они обладают низкими диэлектрическими потерями, высоким удельным сопротивлением, высокой электрической прочностью, высокой технологичностью и

Бумага и картон
Бумаги и картоны – это листовые или рулонные материалы коротковолокнистого строения, состоящие в основном из древесной целлюлозы. Важным преимуществом этих материалов является то, что они производя

Слоистые пластики
Широкое применение в качестве конструкционных и электроизоляционных материалов имеют слоистые пластики — композиции, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пр

Лакоткани
Лакотканью называется гибкий электроизоляционный материал, представляющий собой ткань, пропитанную электроизоляционным лаком. Ткань обеспечивает значительную механическую прочность, а лаковая пленк

ПРОВОДЯЩИЕ МАТЕРИАЛЫ.
  В зависимости от плотности тока в проводах потери могут сильно различаться. Ясно, что при пропускании определенной мощности по линии электропередач, например для трехфазной линии Р

Материалы для проводов. Медь, алюминий.
  Основной характеристикой проводника является его удельное сопротивление. Естественно, чем оно ниже, тем лучшим проводником является тот или иной материал. Из проводниковых

Материалы для контактов.
  Проводники в месте контакта отличаются от проводников в объеме проводов несколькими обстоятельствами их функционирования.   Во - первых, невозможно сделать пл

Металлические резистивные материалы
Из металлических материалов для резисторов наибольшее распространение получили материалы на основе никеля, хрома и железа, т.н нихромы, и родственные им материалы на основе железа, хрома и алюминия

Принцип сверхпроводимости. Влияние магнитного поля
  Протекание тока в проводниках всегда связано с потерями энергии, т.е. с переходом энергии из электрического вида в тепловой вид. Этот переход необратим. На самом деле, - и этот факт

Процессы в диэлектриках под действием сильных электрических полей
9.1. Элементарные процессы в газах. Лавина, стример, лидер. 9.2. Пробой в жидкостях. Эмпирические зависимости электрической прочности. Роль газовых пузырьков. 9.3. Пробой твердых

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги