рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Управление как процесс.

Управление как процесс. - раздел Философия, Лекция №2.4. Кибернетический подход к описанию систем Кибернетический Подход К Описанию Систем Состоит В Том, Что Всякое Целенаправ...

Кибернетический подход к описанию систем состоит в том, что всякое целенаправленное поведение рассматривается как управление. Управление — в широком, кибернетическом смысле — это обобщение приемов и методов, накопленных разными науками об управлении искусственными объектами и живыми организмами. Язык управления — это использование понятий «объект», «среда», «обратная связь», «алгоритм» и т.д.

Y

Под управлением будем понимать
процесс организации такого

целенаправленного воздействия на некоторую часть среды, называемую объектом управления, в результате которого удовлетворяются потребности субъекта, взаимодействующего с этим объектом.

рис. 2.1. Кибернетический подход к процессу управления

Анализ управления заставляет выделить тройку — среду, объект и субъект, внутри которой разыгрывается процесс управления (рис. 2.1). В данном случае субъект ощущает на себе воздействие среды Х и объекта У. Если состояние среды Х он изменить не может, то состоянием объекта У он может управлять с помощью специально организованного воздействия U. Это и есть управление.

Состояние объекта Y влияет на состояние потребностей субъекта. Потребности субъекта A = (α1,...,αk),где αi— состояние i-й потребности субъекта, которая выражается неотрицательным числом, характеризующим насущность, актуальность этой потребности. Свое поведение субъект строит так, чтобы минимизировать насущность своих потребностей, т. е. решает задачу многокритериальной оптимизации:

αι (X,U) → min (i = 1,.. k), (2.1)

r∈R

где R — ресурсы субъекта. Эта зависимость выражает неизвестную, но существующую связь потребностей с состоянием среды Х и поведением U субъекта.

Пусть Ux*—решение задачи (2.1), т. е. оптимальное поведение субъекта, минимизирующее его потребности А. Способ решения задачи (2.1), позволяющий определить Ux*, называется алгоритмом управления

Ux*= ф (At ,X), (2.2)

 

где ф — алгоритм, позволяющий синтезировать управление по состоянию среды Х и потребностей At . Потребности субъекта изменяются не только под влиянием среды или объекта, но и самостоятельно, отражая жизнедеятельность субъекта, что отмечается индексом t.

Алгоритм управления ф, которым располагает субъект, и определяет эффективность его функционирования в данной среде. Алгоритм имеет рекуррентный характер:

UN+1= ф(UN,At,X),

т. е. позволяет на каждом шаге улучшать управление. Например, в смысле

At(X,UN+1)<At(X,UN),

т. е. уменьшения уровня своих потребностей.

Процесс управления как организация целенаправленного воздействия на объект может реализовываться как на интуитивном ,так и на осознанном уровне. Первый используют животные, второй — человек. Осознанное удовлетворение потребностей заставляет декомпозировать алгоритм управления и вводить промежуточную стадию — формулировку цели управления, т. е. действовать по двухэтапной схеме:

At → Z* → U*.

этап 1 2

На первом этапе определяется цель управления Z*, причем задача решается на интуитивном уровне:

Z*= ф1 (X, At,),

где ф1 — алгоритм синтеза цели Z* по потребностям Аt и состоянию среды X. На втором этапе определяется управление Ux*, реализация которого обеспечивает достижение цели 2.*, сформированной на первой стадии, что и приводит к удовлетворению потребностей субъекта. Именно на этой стадии может быть использована вся мощь формального аппарата, с помощью которого по цели Z* синтезируется управление

Ux*= ф2 (Z* ,X),

где ф2 — алгоритм управления. Этот алгоритм и есть предмет изучения кибернетики как науки.


Таким образом, разделение процесса управления на два этапа отражает известные стороны науки — неформальный, интуитивный, экспертный и формальный, алгоритмизуемый.


 


 

 


 


Если первая пока полностью принадлежит человеку, то вторая является объектом приложения формальных подходов. Естественно, что эти различные функции выполняются разными структурными элементами. Первую функцию (φ1, выполняет субъект, а вторую (φ2 — управляющее устройство (УУ). На рис. 2.2 показано взаимодействие этих элементов. Штриховой линией выделена система управления (СУ), выполняющая функцию реализации целей управления Z*, формируемых субъектом. ИМ - исполняющий модуль.

2. Системы управления - сложные объекты. Структурная схема СУ приведена на рис. 2.3. Здесь Dx и Dy — датчики, измеряющие состояние среды и объекта соответственно. Результаты измерений Х'=Dx(Х) и У'=Dy(У) образуют исходную информацию J = {X', У'} для УУ, которое на этой основе вырабатывает команду управления U, являющуюся лишь информацией о том, в какое положение должны быть приведены управляемые входы объекта.

 

Рис. 2.4. Процесс управления как информационные процесс

Система управления — совокупность взаимодействующих между собой объекта управления и органа управления, деятельность которых направлена заданной цели управления (рис.2.5).

В СУ решаются четыре основные задачи управления: стабилизация, выполнение программы, слежение, оптимизация.

Задачами стабилизации системы являются задачи поддержания ее выходных величин вблизи некоторых неизменных заданных значений, несмотря на действие помех. Например, стабилизация напряжения U и частоты f тока в сети вне зависимости от изменения потребления энергии.

Задача выполнения программы возникает в случаях, когда заданные значения управляемых величин изменяются во времени заранее известным образом.

В системах оптимального управления требуется наилучшим образом выполнить поставленную перед системой задачу при заданных реальных условиях и ограничениях. Понятие оптимальности должно быть конкретизировано для каждого отдельного случая.

Прежде чем принимать решение о создании СУ, необходимо рассмотреть все его этапы, независимо от того, с помощью каких технических средств они будут реализованы. Такой алгоритмический анализ управления является основой для принятия решения о создании СУ и степени ее автоматизации. При этом анализе следует обязательно учитывать фактор сложности объекта управления:

отсутствие математического описания системы;

стохастичность поведения;

негативность к управлению;

не стационарность, дрейф характеристик;

невоспроизводимость экспериментов (развивающаяся система все время как бы перестает быть сама собой, что предъявляет специальные требования к синтезу и коррекции модели объекта управления).

Особенности сложной системы часто приводят к тому, что цель управления таким объектом в полной мере никогда не достигается, как бы совершенно ни было управление.

Системы управления делятся на два больших класса: системы автоматического управления (САУ) и автоматизированные системы управления (АСУ). В САУ управление объектом или системой осуществляется без непосредственного участия человека автоматическими устройствами. Это замкнутые системы. Основные функции САУ: автоматический контроль и измерения, автоматическая сигнализация, автоматическая защита, автоматические пуск и остановка различных двигателей и приводов, автоматическое поддержание заданных режимов работы оборудования, автоматическое регулирование. В отличие от САУ в АСУ в контур управления включен человек, на которого возлагаются функции принятия наиболее важных решений и ответственности за принятые решения. Под АСУ обычно понимают человеко-машинные системы, использующие современные экономико-математические методы, средства электронно-вычислительной техники(ЭВТ) и связи, а также новые организационные принципы для отыскания и реализации на практике наиболее эффективного управления объектом(системой).

3. Этапы управления. Управление сложной системы состоит из этапов, представленных на рис.2.6.

 

1.Формирование целей. Множество целей управления, которое должно реализовать СУ определяется как внешними по отношению к системе, так и внутренними факторами и, в частности, потребностям субъекта А. Сложность формализации учета влияния на цели очевидна. Различают три вида целей: стабилизация— заключается в требовании поддерживать выходы объекта на заданном уровне; ограничение — требует нахождения в заданных границах целевых переменных Zi*, i=1,..k; экстремальная цель—сводится к поддержанию в экстремальном состоянии целевых переменных Zi*.

2.Определение объекта управления. Этот этап связан с выделением той части
среды субъекта, состояние которой он может изменить и тем самым воздействовать на свои потребности. В ряде случаев, когда границы объекта очевидны, проблемы выделения объекта из среды не возникает. Это бывает, когда объект достаточно автономен (самолет, телефонная станция и т. д.). Однако в других случаях связи объекта со средой настолько сильны и разнообразны, что порой очень трудно понять, где кончается объект и начинается среда. Именно это и заставляет вводить специальный этап — определение объекта управления. Объект должен быть в определенном смысле минимальным, т. е. иметь наименьший объем. Это необходимо с целью минимизации трудоемкости его изучения при синтезе модели. При этом существенным ограничением выступает достижимость множества целей управления {Z*} в рамках выделенного для этого ресурса R. Это означает, что для любого состояния среды Х должно найтись управление U* €R, с помощью которого можно добиться любой допустимой цели Z* € { Z*}

3.Структурный синтез модели. Последующие три этапа управления сложными системами связаны с решением задачи создания ее модели, которая нужна для синтеза управления U. Только с помощью модели объекта можно построить управление U*, переводящее объект в требуемое (целевое) состояние Z*. Модель F, связывающая входы Х и U с выходом У, определяется структурой SТ и параметрами С={с1 ...,ck}, т. е. представима в виде двойки F={SТ, С). На этом этапе определяется структура SТ, т. е. модель объекта с точностью до значений ее параметров С. Этап структурного синтеза включает:

определение внешней структуры модели,

декомпозицию модели,

определение внутренней структуры элементов модели.

Синтез внешней структуры сводится к содержательному определению входов Х и U, выхода У без учета внутренней структуры объекта, т.е. объект рассматривается как некий «черный ящик» с n+q входами и m выходами. Декомпозиция модели заключается в том,чтобы, воспользовавшись априорными сведениями о структуре объекта, упростить задачу синтеза структуры модели. Синтез структуры модели сводится к определению вида оператора F модели объекта с точностью до параметров С. Это значит, что параметры становятся переменными модели, т. е.

Y=F(X,U,С), (2.3)

где F — оператор преобразования структуры SТ, параметры которого для удобства внесены в переменные С. Представление оператора преобразования модели в виде (2.3) можно назвать параметризацией модели, что эквивалентно заданию его структуры. При синтезе структуры моделей объектов управления могут применяться различные подходы — от классических методов теории автоматического управления (ТАУ) до современных методов имитационного моделирования (методы случайного поиска, статистических испытаний и др.), семиотического моделирования с использованием языка бинарных отношений и других методов современной математики, использующих сочетание дополняющих друг друга возможностей аналитических и статистических, семиотических и графических и других формализованных представлений системы.

4. Идентификация параметров модели объекта. Этот этап связан с определением числовых значений параметров С в режиме нормального функционирования объекта. Делается это стандартными приемами идентификации. Для выяснения зависимости выхода объекта от управляемых входов (U необходимо преднамеренно их изменять, т. е. экспериментировать с объектом. Однако сложная система «не любит» эксперименты, нарушающие режим ее нормального функционирования. Поэтому эксперимент, которого нельзя набежать, следует проводить, минимально возмущая объект, но так, чтобы получить при этом максимальную информацию о влиянии варьируемых параметров на выход объекта.

5. Планирование эксперимента. На данном этане главным является синтез плана эксперимента, позволяющего с максимальной эффективностью определить искомые параметры модели объекта управления. Для статического объекта этот план {U представляет собой набор состояний управляемого выхода объекта U={U1 ..., Un}, а для динамического — план- функцию 0<=t<=T, т. е. программу изменения во времени входа объекта. Эксперимент на объекте дает возможность определить реакцию объекта на это воздействие. В статическом случае эта реакция имеет вид Y={y1, ..., yn),

где yi =F°{Vi),i =1 ,N, а в динамическом — У(t)= F{u(t)}. Полученная информация и является исходной для определения параметров модели F: У=F(U,С), что осуществляется методами идентификации. План эксперимента 0 определяется: структурой SТ модели F, ресурсом планирования R, который образуется выделяемыми на эксперимент средствами, областью планирования, определяющей пределы изменения входа U; критерием планирования, который определяет эффективность плана U.

6. Синтез управления. На этом этапе принимается решение о том, каково должно быть управление U, чтобы достигнуть заданной цели управления Z* в объекте. Это решение опирается на имеющуюся модель объекта F, заданную цель Z*, полученную информацию о состоянии среды Х и выделенный ресурс управления R, который представляет собой ограничения, накладываемые на управление U в связи со спецификой объекта и возможностями СУ. Достижение цели Z* возможно соответствующим выбором управления U (состояние среды Х изменяется независимо от нас). Это приводит к экстремальной задаче

Q(X,Y) → min →U*

– Конец работы –

Эта тема принадлежит разделу:

Лекция №2.4. Кибернетический подход к описанию систем

U... решение которой U является оптимальным управлением Способы решения задачи... Реализация управления или отработка в объекте оптимального решения U полученного на предыдущем этапе Реализовав...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Управление как процесс.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Моделирование систем
Классификация видов моделирования систем. В основе моделирования лежит теория подобия, которая утверждает, абсолютное подобие может иметь место лишь при замене объекта другим точно таким же. При мо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги