рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Компоновка функциональной схемы

Компоновка функциональной схемы - раздел Философия, Автоматическое управление пуском и остановкой оборудования, коммутационные операции и т.д Выбор Параметров Объекта Управления. Так Как В Техническом Задании Уже Опреде...

Выбор параметров объекта управления. Так как в техническом задании уже определен тип исполнительного двигателя, то остается только выбрать его каталожные данные и согласовать их с техническими данными системы. Выбор двигателя проведем на основе следующих соображений.

Двигатель должен обеспечить скоростные характеристики системы, поэтому его максимальная скорость вращения должна быть не меньше этого парамет­ра системы. Качество динамических характеристик автоматической системы во многом определяется запасом мощности исполнительной машины, поэто­му двигатель желательно выбирать с превышением мощности системы. В дан­ном случае выбираем двигатель с номинальной мощностью, превышающей мощность системы не менее чем на 30 %. Таким образом, двигатель должен удовлетворять следующим условиям:

Nд.max ≥ nc,

Pд.ном ≥ 1,3Рс,

Исходя из этих условий, намечаем для установки в систему двигатель типа 2ПН160LУХЛ4 со следующими параметрами:

1.Номинальная мощность Рд.н = 4,0 кВт.

2.Номинальное напряжение Uд.н = 220 В.

3.Номинальная скорость вращения nд.н = 2500 об/мин.

4.Коэффициент полезного действия η = 78,5 %.

5.Активное сопротивление якоря Ra = 0,486 Ом.

6.Индуктивность якоря La = 14,7 мГн.

Рассчитаем остальные параметры двигателя:

номинальный ток якоря

A; (9.1)

номинальная частота вращения

с-1; (9.2)

номинальный момент вращения

Нм; (9.3)

электромагнитная постоянная цепи якоря

с; (9.4)

механическая постоянная системы, приведенная к валу двигателя

с, (9.5)

где Н- коэффициент пропорциональности по трению (в расчетах системы принято Н = 0,01 Нмс).

Выбор способа управления двигателем.Способ регулирования частоты вращения двигателя является одним из важнейших факторов, определяющих конфигурацию будущей системы и ее эксплуатационные характеристики.

Все возможные способы регулирования частоты вращения двигателя оп­ределяются из его скоростной характеристики

, (9.6)

где U - напряжение на якоре двигателя, Iа,Iв- токи якоря и возбуждения,

kв - коэффициент пропорциональности.

Как известно из теории двигателей постоянного тока, наиболее эффектив­ными способами их регулирования являются якорное регулирование и регули­рование током возбуждения.

Якорное регулирование осуществляется изменением напряжения якоря U при постоянном токе возбуждения. Так как увеличение напряжения выше номинального недопустимо, то согласно (9.6) этот способ регулирования обес­печивает регулирование скорости только "вниз". К достоинствам якорного ре­гулирования следует отнести существование благоприятных условий работы коллекторно-щеточного аппарата и высокая надежность работы машины во всем диапазоне скоростей.

Регулирование током возбуждения основано на уменьшении тока возбуж­дения при постоянном U. Согласно уравнению (9.6), этим обеспечивается регу­лирование "вверх". Существенным недостатком такого регулирования являет­ся ухудшение условий работы коллекторно-щеточного аппарата машины при глубоком регулировании, что связано с возможностью появления кругового огня на коллекторе (это эквивалентно короткому замыканию источника пита­ния). Подробное объяснение отмеченных свойств можно найти в [5].

Исходя из приведенных соображений, выбираем для САР якорное регули­рование частоты вращения двигателя.

Выбор способа управления системой.Следующим фактором, опреде­ляющим общую конфигурацию системы, является выбор способа управления регулируемой величиной (напомним, что в этой системе регулируемой вели­чиной является частота вращения вала (t)). Поскольку в ТЗ не оговарива­ются особые условия по характеру возможных возмущений, то выбираем спо­соб управления "по отклонению". Это универсальный способ, обеспечиваю­щий управление системой при действии на нее любых видов возмущений, как внутренних, так и внешних.

Разработка функциональной схемы САР.Для организации управления "по отклонению" в системе должна быть создана отрицательная обратная связь по регулируемой величине. Для данной системы эта обратная связь является главной. Кроме того, при разработке функциональной схемы следует заложить выполнение следующих операций:

1)измерение регулируемого параметра;

2)сравнение его текущего значения с заданным;

3)отработка рассогласования (ошибки регулирования).

Функциональная схема САР, удовлетворяющая всем перечисленным выше условиям, изображена на рис. 9.1.

Рис. 9.1. Функциональная схема системы автоматического регулирования частоты вращения вала: U3 - напряжение задания; - напряжение рассогласования; Uy - напряжение управления; U, I - напряжение и ток двигателя; Uтг - напряжение тахогенератора; Н- коэффициент пропорцио­нальности по трению; М - момент сопротивления нагрузки на валу; J - момент инерции системы.

 

Регулирование и стабилизация частоты вращения вала в этой схеме осуще­ствляется следующим образом. Задание частоты вращения обеспечивается напряжением задания Uз. Напряжение с тахогенератора Uтг, пропорциональное частоте вращения, поступает по цепи главной обратной связи на вход системы и сравнивается с напряжением задания. Рассогласование сигналов ∆U = Uз - Uтг поступает на вход регулятора скорости, который формирует управляющее напряжение Uy. С помощью этого напряжения, используя, пре­образователь, формируется напряжение на якоре двигателя, определяющее ско­рость его вращения.

 

– Конец работы –

Эта тема принадлежит разделу:

Автоматическое управление пуском и остановкой оборудования, коммутационные операции и т.д

Теория автоматического регулирования это наука о принципах построения автоматических систем и о закономерностях...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Компоновка функциональной схемы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Начальные сведения о системах автоматического регулирования
Любую автоматическую систему можно условно разделить на две части – объект управления и управляющее устройство. Взаимодействие этих частей между собой схематично показано на рис.1.1.

Понятие о линейных, нелинейных и линеаризованных моделях
  Для любого физического объекта может быть составлена математическая модель, которая представляет собой набор определенных математических соотношений между переменными величинами это

Принципы автоматического управления
Несмотря на большое разнообразие технических процессов и объектов, в которых используется автоматическое управление, организация управления основывается на небольшом числе общих принципов это:

Интегральные преобразования Лапласа
В исследовании динамики автоматических систем широко применяются интегральные преобразования Лапласа, Хевисайда-Карсона, Фурье. Одна из привлекательных сторон этих преобразований в том, что они пон

Понятие о статических характеристиках
  Под статической характеристикой физического объекта понимают уравнение вида (3.1)

Понятие о статическом и астатическом регулировании
  По виду статических характеристик все автоматические системы делятся на статические и астатические, или говорят о статическом и астатическом регулировании. Пр

Автоматические системы стабилизации напряжения
1. Объект регулирования (рис.3.2). Объектом регулирования является генератор постоянного т

Автоматические системы стабилизации частоты вращения вала
1. Объект регулирования.Объектом регулирования является двигатель постоянного тока независимого возбуждения, для которого справедливы следующие уравнения  

Понятие динамического звена
  Автоматические системы состоят из разнообразных элементов, среди которых могут быть генераторы, двигатели, термопары, реостаты, редукторы и многие другие конструкции. Но при математ

Динамические характеристики звена
Автоматические системы относятся к классу динамических систем, потому что процессы регулирования, протекающие в них, сопровождаются постоянными изменениями во времени. Математическое описание этих

Типовые динамические звенья
  Понятием типовое звено в теорию введен еще один исключительно удобный расчетно-аналитический инструмент. Из всего многообразия возможных динамических звеньев выделена группа

Безынерционное звено
  Уравнение динамики этого звена описывается алгебраическим уравнением  

Инерционное (апериодическое) звено первого порядка
  Уравнение динамики звена   , (4.16)   где Т –

Инерционное звено второго порядка
Уравнение динамики звена   , (4.20)   где Т –постоянная времени,

Интегрирующие звенья
  Интегрирующим называется звено, в котором производится интегрирование входного воздействия, и поэтому в выходном воздействии обязательно присутствует интеграл

Дифференцирующие звенья
Дифференцирующие звенья реагируют на скорость изменения входного воздействия, и поэтому в их дифференциальных уравнениях в правой части содержатся производные от входной переменной.

Запаздывающее звено
Запаздывающим называется звено в котором выходное воздействие повторяет входное воздействие без искажений, но с некоторым постоянным запаздыванием во времени на величину t. Эти условия определяют у

Частотные характеристики безынерционного звена
  Апериодическое звено. АФХ этого звена определяется выражением  

Логарифмические частотные характеристики типовых звеньев
Покажем технику построения ЛЧХ на примере двух динамических звеньев. Безынерционное звено. Логарифмируя частотную передаточную функцию (4.15) , найдем  

Определение начальных условий
Под начальными условиями дина­мического процесса понимается его со­стояние в момент времени, принятый за начало процесса. Начальные усло­вия задаются совокупностью значений выходной координаты иссл

Понятие устойчивости
  Под устойчивостью понимают способность системы самостоятельно приходить к установившемуся состоянию после приложения воздействия, которое вывело ее из состояния равновесия.

Устойчивость линейных систем
Свободное движение линейной системы описывается однородным дифференциальным уравнением . (6.1)

Методы определения устойчивости
Для того, чтобы система была устойчивой, должны выполняться определенные условия, которые называются условиями устойчивости. Все условия устойчивости разделяются на необходимые и достаточные

Критерии устойчивости
  Все критерии устойчивости делятся на алгебраические и частотные. Если для работы с алгебраическими критериями необходимо иметь, по крайней мере, характеристическое ура

Запас устойчивости
  Запас устойчивости – это количественная оценка, определяющая удаление расчетных параметров системы от зоны, опасной с точки зрения устойчивости. Формулировка запаса

Об устойчивости нелинейных систем
  Рассмотренные выше вопросы устойчивости, строго говоря, справедливы только для линейных систем. Но почти все реальные системы являются нелинейными, и поэтому возникает вопрос - наск

Показатели качества регулирования
Из предыдущей главы мы знаем, что автоматическая система, прежде всего, должна быть устойчивой. В устойчивой системе переходный процесс затухает, однако для практики вовсе не безразлично то, как эт

Косвенные методы оценки качества регулирования
  Метод распределения корней.Этот метод дает возможность приближенно оценить характер переходного процесса по расположению корней относительно мнимой оси. В основу ме

ФОРМИРОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК
Процесс проектирования автоматической системы можно условно разбить на два этапа. На первом этапе закладывается функциональная схема системы, выбираются ее элементы, задаются законы

Законы регулирования
Предположим, что в системе появилось рассогласование, то есть действительное значение регулируемой величины стало отличаться от заданного значения. Как должна реагировать система на эту ситуацию? Р

Коррекция характеристик АС
  Понятие о коррекции. В автоматических системах, которые состоят только из основных функционально необходимых элементов, обычно не удается получить требуемые показат

СТАБИЛИЗАЦИИ
Расчет системы автоматического регулирования (САР) представляет собой задачу, имеющую, как правило, многозначное решение. Выбор оптимальной кон­фигурации САР зависит от требований, предъявляемых ка

Статическая модель САР
Статическая модель описывает систему в установившемся режиме и по­этому используется для расчета параметров настройки ее элементов, при ко­торых будут обеспечены заданные в ТЗ параметры статических

Динамическая модель САР
В уравнениях динамической модели присутствует координата времени, и поэтому модель представляет собой систему дифференциально-алгебраичес­ких уравнений. Примечание. Так как решен

Анализ динамики САР
9.3.3.1. Динамические характеристики САР. Динамической характерис­тикой САР является функциональная зависимость между переменными моде­ли. Последовательность получения х

ЗАКЛЮЧЕНИЕ
В методических указаниях показаны основные принципы начального эта­па разработки автоматической системы. Это первичная компоновка схемы, оп­ределение параметров настройки и расчеты статических и ди

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. В.А.. Бесекерский, Теория систем автоматического регулиро­вания. В. А. Бесекерский, Е. П. Попов. – М. : Наука, 1975. - 457 с. 2.Куропаткин, П.В. Теория автоматического управления./ П.В.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги