рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Анализ динамики САР

Анализ динамики САР - раздел Философия, Автоматическое управление пуском и остановкой оборудования, коммутационные операции и т.д 9.3.3.1. Динамические Характеристики Сар. Динамич...

9.3.3.1. Динамические характеристики САР. Динамической характерис­тикой САР является функциональная зависимость между переменными моде­ли. Последовательность получения характеристик на основе структурной схе­мы показана в параграфе 9.3.1.1. Здесь следует напомнить читателю, что струк­турные схемы дают только операторное выражение характеристик, а для полу­чения характеристик в реальных переменных потребуется выполнить обрат­ное преобразование Лапласа.

Динамика частоты вращения вала системы . В качестве не­зависимых переменных здесь выступают возмущающие воздействия: Ũ3 - на­пряжение задания и - момент нагрузки на валу системы. Линейность моде­ли позволяет получить искомую характеристику как сумму характеристик от отдельных возмущений, т.е.

, (9.41)

где и - передаточные функции системы относительно точек , и , .

Относительно точек , структурная схема имеет один прямой путь WcWпрW1W2W3 и два контура с обратными отрицательными связями WcWпрWlW2W3Wтг и W1W2W3W4. Это позволяет записать передаточную функцию по правилу Мейсона следующим образом:

.

или после исключения по знаку *

.

Подставим в последнюю формулу значения передаточных функций по табл. 9.1 и после упрощений получим

. (9.42)

В записи этой формулы принято следующее: произведения одноименных ко­эффициентов сокращенно записываются так . После подстановки данных из табл. 9.1 получим

. (9.43)

Аналогичные преобразования структурной схемы относительно точек , дают

,

или

. (9.44)

 

Здесь принято: , .

Таким образом, операторное выражение механической характеристики си­стемы будет следующим:

. (9.45)

Для анализа динамических свойств системы необходимо получить само­стоятельно другие характеристики:

; .

9.3.3.2. Характеристическое уравнение САР. Читатель заметил, что в пере­даточных функциях и , которые участвуют в описании механи­ческой характеристики системы, одинаковый знаменатель. И это совпадение не случайное - из теории автоматического управления известно, что любая другая передаточная функция системы будет иметь такой же знаменатель. Выражение знаменателя называется характеристическим уравнением системы, и оно описывает свободное движение системы.

Характеристическим уравнением системы является полином второй сте­пени

 

; (9.46)

 

где ; ; .

9.3.3.3. Проверка системы на устойчивость. Характеристическое уравне­ние системы используется для проверки ее на устойчивость. Но поскольку
данная система имеет характеристическое уравнение второго порядка, то, по известным положениям теории устойчивости, для нее необходимым и дос­таточным условием устойчивости является положительность всех коэффици­ентов ее характеристического уравнения. По результатам расчета этих коэф­фициентов делаем вывод, что данная система устойчива.

Построение годографа Михайлова. Годограф Михайлова относится к од­ному из методов определения устойчивости системы, и его уравнение получа­ется из характеристического уравнения системы заменой оператора "" на ""

(9.47)

или

, .

Годограф строится на комплексной плоскости , при изменении . Годограф устойчивой системы должен охватывать начало коорди­нат и проходить против часовой стрелки столько квадрантов, каков порядок характеристического уравнения. Годограф системы начинается в первом квад­ранте и в четвертом уходит в бесконечность.

9.3.3.4. Построение переходных характеристик САР. Переходная харак­теристика определяет переходный процесс в автоматической системе, когда на нее действует ступенчатое возмущение. Для построения переходной харак­теристики надо от ее изображения перейти к оригиналу. Это делается с помо­щью обратного преобразования Лапласа.

В качестве примера проведем построение переходной характеристики

, которая определяет динамику изменения частоты враще­ния вала системы при действии на нее двух возмущений: напряжения зада­ния Uз(t) и момента сопротивления на валу M(t). Изображение этой характе­ристики дано в уравнении (9.45), но для использования этой формулы требуется задать законы изменения возмущений. Так как по условию построения пере­ходной характеристики эти возмущения должны иметь ступенчатую форму, то запишем

, , (9.48)

где Uз и М - значения реальных физических сигналов, действующих в авто­матической системе. Тогда окончательный вид изображения характеристики будет таким

(9.49)

 

Запишем эту формулу следующим образом:

, (9.50)

где - полином третьей степени, имеет три корня. Эти корни определяются из уравнения V(p) = 0 и имеют следующие значения:

(9.51)

где и - определяют соответственно затухание и частоту

свободных колебаний переходного процесса системы.

Так как V(p) = 0 не имеет кратных корней, то оригинал для (9.49) определя­ем по формуле разложения вида

, (9.52)

где V’(p) = 3a2p2+2a1p+a0 – производная от V(p).

По формуле разложения получим искомую переходную характеристику, кото­рую запишем в таком виде

Но поскольку корни р2, р3 комплексные, то и переходная характеристика будет записана в комплексной форме. Преобразование комплексной формы в веществен­ную покажем на примере первого слагаемого в формуле (9.53), которое имеет вид

.

Далее запишем и , где , , и по формуле Эйлера найдем

.

В результате комплексное выражение запишется в вещественной форме

. (9.53)

После проведения указанных преобразований переходная характеристика системы будет описываться следующим уравнением:

. (9.54)

– Конец работы –

Эта тема принадлежит разделу:

Автоматическое управление пуском и остановкой оборудования, коммутационные операции и т.д

Теория автоматического регулирования это наука о принципах построения автоматических систем и о закономерностях...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Анализ динамики САР

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Начальные сведения о системах автоматического регулирования
Любую автоматическую систему можно условно разделить на две части – объект управления и управляющее устройство. Взаимодействие этих частей между собой схематично показано на рис.1.1.

Понятие о линейных, нелинейных и линеаризованных моделях
  Для любого физического объекта может быть составлена математическая модель, которая представляет собой набор определенных математических соотношений между переменными величинами это

Принципы автоматического управления
Несмотря на большое разнообразие технических процессов и объектов, в которых используется автоматическое управление, организация управления основывается на небольшом числе общих принципов это:

Интегральные преобразования Лапласа
В исследовании динамики автоматических систем широко применяются интегральные преобразования Лапласа, Хевисайда-Карсона, Фурье. Одна из привлекательных сторон этих преобразований в том, что они пон

Понятие о статических характеристиках
  Под статической характеристикой физического объекта понимают уравнение вида (3.1)

Понятие о статическом и астатическом регулировании
  По виду статических характеристик все автоматические системы делятся на статические и астатические, или говорят о статическом и астатическом регулировании. Пр

Автоматические системы стабилизации напряжения
1. Объект регулирования (рис.3.2). Объектом регулирования является генератор постоянного т

Автоматические системы стабилизации частоты вращения вала
1. Объект регулирования.Объектом регулирования является двигатель постоянного тока независимого возбуждения, для которого справедливы следующие уравнения  

Понятие динамического звена
  Автоматические системы состоят из разнообразных элементов, среди которых могут быть генераторы, двигатели, термопары, реостаты, редукторы и многие другие конструкции. Но при математ

Динамические характеристики звена
Автоматические системы относятся к классу динамических систем, потому что процессы регулирования, протекающие в них, сопровождаются постоянными изменениями во времени. Математическое описание этих

Типовые динамические звенья
  Понятием типовое звено в теорию введен еще один исключительно удобный расчетно-аналитический инструмент. Из всего многообразия возможных динамических звеньев выделена группа

Безынерционное звено
  Уравнение динамики этого звена описывается алгебраическим уравнением  

Инерционное (апериодическое) звено первого порядка
  Уравнение динамики звена   , (4.16)   где Т –

Инерционное звено второго порядка
Уравнение динамики звена   , (4.20)   где Т –постоянная времени,

Интегрирующие звенья
  Интегрирующим называется звено, в котором производится интегрирование входного воздействия, и поэтому в выходном воздействии обязательно присутствует интеграл

Дифференцирующие звенья
Дифференцирующие звенья реагируют на скорость изменения входного воздействия, и поэтому в их дифференциальных уравнениях в правой части содержатся производные от входной переменной.

Запаздывающее звено
Запаздывающим называется звено в котором выходное воздействие повторяет входное воздействие без искажений, но с некоторым постоянным запаздыванием во времени на величину t. Эти условия определяют у

Частотные характеристики безынерционного звена
  Апериодическое звено. АФХ этого звена определяется выражением  

Логарифмические частотные характеристики типовых звеньев
Покажем технику построения ЛЧХ на примере двух динамических звеньев. Безынерционное звено. Логарифмируя частотную передаточную функцию (4.15) , найдем  

Определение начальных условий
Под начальными условиями дина­мического процесса понимается его со­стояние в момент времени, принятый за начало процесса. Начальные усло­вия задаются совокупностью значений выходной координаты иссл

Понятие устойчивости
  Под устойчивостью понимают способность системы самостоятельно приходить к установившемуся состоянию после приложения воздействия, которое вывело ее из состояния равновесия.

Устойчивость линейных систем
Свободное движение линейной системы описывается однородным дифференциальным уравнением . (6.1)

Методы определения устойчивости
Для того, чтобы система была устойчивой, должны выполняться определенные условия, которые называются условиями устойчивости. Все условия устойчивости разделяются на необходимые и достаточные

Критерии устойчивости
  Все критерии устойчивости делятся на алгебраические и частотные. Если для работы с алгебраическими критериями необходимо иметь, по крайней мере, характеристическое ура

Запас устойчивости
  Запас устойчивости – это количественная оценка, определяющая удаление расчетных параметров системы от зоны, опасной с точки зрения устойчивости. Формулировка запаса

Об устойчивости нелинейных систем
  Рассмотренные выше вопросы устойчивости, строго говоря, справедливы только для линейных систем. Но почти все реальные системы являются нелинейными, и поэтому возникает вопрос - наск

Показатели качества регулирования
Из предыдущей главы мы знаем, что автоматическая система, прежде всего, должна быть устойчивой. В устойчивой системе переходный процесс затухает, однако для практики вовсе не безразлично то, как эт

Косвенные методы оценки качества регулирования
  Метод распределения корней.Этот метод дает возможность приближенно оценить характер переходного процесса по расположению корней относительно мнимой оси. В основу ме

ФОРМИРОВАНИЕ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК
Процесс проектирования автоматической системы можно условно разбить на два этапа. На первом этапе закладывается функциональная схема системы, выбираются ее элементы, задаются законы

Законы регулирования
Предположим, что в системе появилось рассогласование, то есть действительное значение регулируемой величины стало отличаться от заданного значения. Как должна реагировать система на эту ситуацию? Р

Коррекция характеристик АС
  Понятие о коррекции. В автоматических системах, которые состоят только из основных функционально необходимых элементов, обычно не удается получить требуемые показат

СТАБИЛИЗАЦИИ
Расчет системы автоматического регулирования (САР) представляет собой задачу, имеющую, как правило, многозначное решение. Выбор оптимальной кон­фигурации САР зависит от требований, предъявляемых ка

Компоновка функциональной схемы
Выбор параметров объекта управления. Так как в техническом задании уже определен тип исполнительного двигателя, то остается только выбрать его каталожные данные и согласовать их с техническими данн

Статическая модель САР
Статическая модель описывает систему в установившемся режиме и по­этому используется для расчета параметров настройки ее элементов, при ко­торых будут обеспечены заданные в ТЗ параметры статических

Динамическая модель САР
В уравнениях динамической модели присутствует координата времени, и поэтому модель представляет собой систему дифференциально-алгебраичес­ких уравнений. Примечание. Так как решен

ЗАКЛЮЧЕНИЕ
В методических указаниях показаны основные принципы начального эта­па разработки автоматической системы. Это первичная компоновка схемы, оп­ределение параметров настройки и расчеты статических и ди

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. В.А.. Бесекерский, Теория систем автоматического регулиро­вания. В. А. Бесекерский, Е. П. Попов. – М. : Наука, 1975. - 457 с. 2.Куропаткин, П.В. Теория автоматического управления./ П.В.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги