рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Математическое ожидание случайной величины и его свойства.

Математическое ожидание случайной величины и его свойства. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. Рассмотрим Сначала Следующий Пример. Пусть На Завод Поступила Партия, Состоящ...

Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом:

m1 - число подшипников с внешним диаметром х1,
m2 - число подшипников с внешним диаметром х2,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mn - число подшипников с внешним диаметром хn,

Здесь m1+m2+...+mn=N. Найдем среднее арифметическое значение xср внешнего диаметра подшипника. Очевидно,


Внешний диаметр вынутого наудачу подшипника можно рассматривать как случайную величину , принимающую значения х1, х2, ...,хn, c соответствующими вероятностями p1=m1/N, p2=m2/N, ..., pn=mn/N, так как вероятность pi появления подшипника с внешним диаметром xi равна mi /N. Таким образом, среднее арифметическое значение xср внешнего диаметра подшипника можно определить с помощью соотношения


Пусть - дискретная случайная величина с заданным законом распределения вероятностей

Значения х1 х2 . . . хn
Вероятности p1 p2 . . . pn

Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е. *

(39)


Возвращаясь к разобранному выше примеру, мы видим, что средний диаметр подшипника равен математическому ожиданию случайной величины - диаметру подшипника.

Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число, определяемое равенством

(40)


При этом предпологается, что несобственный интеграл, стоящий в правой части равенства (40) существует.

Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.

1°. Математическое ожидание постоянной С равно этой постоянной.
Доказательство. Постоянную C можно рассматривать как случайную величину , которая может принимать только одно значение C c вероятностью равной единице. Поэтому

2°. Постоянный множитель можно выносить за знак математического ожидания, т.е.


Доказательство. Используя соотношение (39), имеем

3°. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин:

(41)

4°. Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий этих величин **:

(42)

 

* в случае, если множество возможных значений дискретной случайной величины образует бесконечную последовательность x1, x2, ...,xn, ..., то математическое ожидание этой случайной величины определяется как сумма ряда

причем требуется, чтобы этот ряд абсолютно сходился.

** Под суммой (произведением) двух случайных величин и понимают случайную величину

, возможные значения которой состоят из сумм (произведений) каждого возможного значения величины и каждого возможного значения величины .

 


2. Дисперсия и ее свойства. Среднее квадратическое отклонение.

Во многих практически важных случаях существенным является вопрос о том, насколько велики отклонения случайной величины от ее математического ожидания.
Предварительно рассмотрим пример. Пусть две случайные величины и заданы следующими рядами распределения

Значения -0,2 -0,1 0,1 0,2
Вероятности p(x) 0,25 0,25 0,25 0,25


Значения -50 -40 40 50
Вероятности p(x) 0,25 0,25 0,25 0,25


Легко убедится в том, что математические ожидания этих величин одинаковы и равны нулю:


Однако разброс значений этих величин относительно их математического ожидания неодинаков. В первом случае значения, принимаемые случайной величиной , близки к ее математическому ожиданию, а во втором случае далеки от него. Для оценки разброса (рассеяния) значений случайной величины около ее математического ожидания вводится новая числовая характеристика - дисперсия.
Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математичекого ожидания *:

(43)

Пусть - дискретная случайная величина, принимающая значения x1, x2, ..., xn соответственно с вероятностями p1, p2, ..., pn. Очевидно, случайная величина принимает значения

с теми же вероятностями p1, p2, ..., pn. Следовательно, согласно определению математического ожидания дискретной случайной величины, имеем

(44)

Если же - случайная величина с плотностью распределения , то по определению

(45)

Принимая во внимание определение дисперсии и свойства математического ожидания, имеем

Так как и - постоянные, то используя свойства математического ожидания, получим

Следовательно,

Откуда окончательно находим

(46)


Рассмотрим теперь свойства дисперсии.

1°. Дисперсия постоянной равна нулю.

Доказательство. Пусть . По формуле (46) имеем

так как математическое ожидание постоянной есть эта постоянная:

 

2°. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

(47)


Доказательство. На основании соотношения (46), можно записать

Так как

и

то

 

3°. Если и - независимые случайные величины , то дисперсия суммы этих величин равна сумме их дисперсий:

(48)

Доказательство. По формуле (46) имеем

Но

Так как и - независимые случайные величины, то

Следовательно

Далее,

поэтому

Таким образом

Следовательно


Замечание. Свойство 3° распространяется на любое конечное число попарно независимых случайных величин:

 

 

Средним квадратическим отклонением случайной величины называется корень квадратный из ее дисперсии:

(49)


Среднее квадратическое отклонение имеет ту же размерность, что и случайная величина .

 

Пример 1. Cлучайная величина - число очков, выпадающих при однократном бросании игральной кости (см. § 3, п.1, пример 1). Определить: математическое ожидание, дисперсию и средне квадратическое отклонение

Решение:

Используя формулы (39), (44) и (49) соответственно получим

 

Пример 2. Cлучайная величина - число наступления события A при одном испытании, причем P(A)=p (см. § 3, п.1, пример 2). Найти математическое ожидание и дисперсию.

Решение:

Величина принимает два значения 0 и 1 соответственно с вероятностями q=1-p и p. Поэтому по формулам (39) и (44) находим

 

Пример 3. Cлучайная величина m - число наступления события A в n независимых опытах, причем вероятность наступления события A в каждом опыте равна p. Найти M(m), D(m) и

Решение:

Пусть - случайная величина, принимающая значения 1 или 0 в зависимости от того, происходит или не происходит событие A в i-м опыте. Тогда . Ясно, что попарно независимы. Из результата примера 2 следует, что , для любого i. На основании свойства 3° для математического ожидания и дисперсии имеем

 

 


Пример 4. Пусть - случайная величина распределенная по закону Пуассона

[См. формулу (17)]. Найти:

Решение:

Используя соотношение (39), получим


Так как

 

 

Пример 5. Пусть - случайная величина, имеющая равномерное распределение с плотностью

[См. формулу (27)]. Найти математическое ожидание, дисперсию и средне квадратическое отклонение cлучайной величины.

Решение:

По формулам (40), (45) и (49) находим

 

Пусть - нормально распределенная случайная величина, с параметрами a и (см. § 3, п.5). Найдем и Так как

,то по формуле (40) находим

Проведем в интеграле замену переменной, полагая

тогда

Следовательно,

Но

[См. формулу (29)]. Далее, так как функция нечетная, то по свойству нечетных функций

Следовательно,

Дисперсию находим по формуле (45)

(вычисление интеграла не приводим).

Итак,

 

Таким образом, параметры a и для нормально распределенной случайной величины имеют простой вероятностный смысл: a есть математическое ожидание, - среднее квадратическое отклонение.

 

* Казалось бы естественным рассматривать не квадрат отклонения, а просто отклонение случайной величины от ее математического ожидания. Однако математическое ожидание этого отклонения равно нулю, так как

Здесь мы воспользовались тем, что постоянно, а математическое ожидание постоянной есть эта постоянная. Можно было бы принять за меру рассеяния математическое ожидание модуля отклонения случайной величины от ее математического ожидания: . Однако, как правило, действия связанные с абсолютными величинами, приводят к громоздким вычислениям.

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Математическое ожидание случайной величины и его свойства.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). Случайным событием (или просто событием) называется всякое явление,

Условная вероятность. Теорема умножения вероятностей.
Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В. Рассмотрим следующий пример. Пусть брошены д

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную посл

Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Определение неизвестных параметров распределения.
C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги