рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение неизвестных параметров распределения.

Определение неизвестных параметров распределения. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. C Помощью Гистограммы Мы Можем Приближенно Построить График Плотности Распред...

C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины . Вид этого графика часто позволяет высказать предположение о плотности распределения вероятностей случайной величины . В выражение этой плотности распределения обычно входят некоторые параметры, которые требуется определить из опытных данных.
Остановимся на том частном случае, когда плотность распределения зависит от двух параметров.
Итак, пусть x1, x2, ..., xn - наблюдаемые значения непрерывной случайной величины , и пусть ее плотность распределения вероятностей зависит от двух неизвестных параметров A и B, т.е. имеет вид . Один из методов нахождения неизвестных параметров A и B состоит в том, что их выбирают таким образом, чтобы математическое ожидание и дисперсия теоретического распределения совпали с выборочными средними значением и дисперсией :

(66)

где

(67)

Из двух полученных уравнений (66) находят неизвестные параметры A и B. Так, например, если случайная величина подчиняется нормальному закону распределения вероятностей, то ее плотность распределения вероятностей

зависит от двух параметров a и . Эти параметры, как мы знаем, являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины ; поэтому равенства (66) запишутся так:

(68)

Следовательно, плотность распределения вероятностей имеет вид

Замечание 1. Такую задачу мы уже решали в § 7. Результат замера есть случайная величина , подчиняющаяся нормальному закону распределения с параметрами a и . За приближенное значение a мы выбрали величину , а за приближенное значение - величину .

Замечание 2. При большом количестве опытов нахождение величин и по формулам (67) cвязано с громоздкими вычислениями. Поэтому поступают так: каждое из наблюдаемых значений величины , попавшее в i-й интервал ] Xi-1, Xi [ статистического ряда, считают приближенно равным середине ci этого интервала, т.е. ci=(Xi-1+Xi)/2. Рассмотрим первый интервал ] X0, X1 [. В него попало m1наблюдаемых значений случайной величины , каждое из которых мы заменяем числом с1. Следовательно, сумма этих значений приближенно равна m1с1. Аналогично, сумма значений , попавших во второй интервал, приближенно равна m2с2 и т.д. Поэтому

Подобным же образом получим приближенное равенство

Итак,

(69)

где n=m1+m2+...+mk, а k - число интервалов статистического ряда.

Замечание 3. На практике для еще большего упрощения вычислений прибегают к следующему приему. Пусть x0 - произвольное число. Обозначим uii-x0 и рассмотрим величины v1 и v2, определяемые соотношениями

(70)

Покажем, что

(71)

Действительно,

так как

[cм.формулы (69)].

Итак, , откуда . Аналогично доказывается и второе из соотношений (71)

 

 

Пример. Построенная гистограмма для статистического распределения значений диаметра вала хвостовика (см. рис. 17) позволяет сделать предположение о том, что мы имеем дело с нормальным законом распределения. Требуется, исходя из опытных данных, представленных в таблице из примера п.8.1., определить параметры a и этого распределения.

Решение. Полагая* x0=75, вычислим v1 и v2. Вычисления расположим, как указано в следующей таблице.

Номера интервалов Cередина интервала ci mi uii-75 miui
-8 -32
-6 -72
-4 -96
-2 -82
     


По формулам (70) находим

Используя теперь формулы (71), имеем


Выберем параметры a и так, чтобы выполнялись условия (68): , . Следовательно, . Таким образом, плотность распределения вероятностей

В следующей таблице приведены вычисления значений функции в средних точках интервала статистического ряда. Значения функции взяты из Табл. I Приложения.

x x-76,21
-9,21 -2,27 0,0303 0,006 0,008
-7,21 -1,78 0,0818 0,020 0,022
-5,21 -1,29 0,1736 0,043 0,045
-3,21 -0,79 0,2920 0,072 0,076
-1,21 -0,30 0,3697 0,091 0,092
0,79 0,20 0,3825 0,095 0,098
2,79 0,69 0,3144 0,075 0,072
4,79 1,18 0,1989 0,049 0,048
6,79 1,62 0,0973 0,024 0,024
8,79 2,17 0,0379 0,009 0,009
10,79 2,66 0,0116 0,003 0,004
12,79 3,16 0,0020 0,001 0,002

В последнем столбце таблицы приведены значения функции , взятые из столбца (5) таблицы из примера из п.8.1. Сравнение показывает, что функция близка к .

* Для простоты вычислений, как это обычно делается, за x0 мы выбрали число, близкое к середине диапазона изменения наблюдаемых значений.

 

§ 9. ЭЛЕМЕНТЫ ТЕОРИИ КОРРЕЛЯЦИЙ.

1. Введение.

В математическом анализе мы имеем дело с функциональной зависимостью между двумя переменными величинами, при которой каждому значени. одной их них соответствует единственное значение другой.
Однако часто приходится иметь дело с более сложной зависимостью, чем функциональная. Такая зависимость возникает тогда, когда одна из величин зависит не только от другой, но и от ряда прочих меняющихся факторов, среди которых могут быть и общие для обеих величин.
Так, например, с увеличением высоты сосны увеличивается диаметр ее ствола. Однако если исследовать эту зависимость по опытным данным, то может оказаться что для отдельных сосен с большей высотой диаметр ствола окажется меньше, чем для сосен с меньшей высотой. Это объясняется тем, что диаметр ствола сосны зависит не только от ее высоты, но и от других факторов (например, от свойств почвы, количества влаги и т.д.).
Это обстоятельство наглядно видно из таблицы, в которой приведены значения диаметров ствола сосны в зависимости от ее высоты. В каждой клетке этой таблицы помещено число сосен, имеющих соответствующие диаметр ствола и высоту*. Так, например, количество сосен с высотой 24 м и с диаметром ствола 26 см равно двум.

  Высота (в м)  
Диаметр (в cм) 22,5-23,5 23 23,5-24,5 24 24,5-25,5 25 25,5-26,5 26 26,5-27,5 27 27,5-28,5 28
20-24 22          
24-28 26      
28-32 30      
32-36 34        
36-40 38      
40-44 42        
44-48 46          

Ниже приведены средние значения диаметра ствола сосны в зависимости от высоты.

Высота
Средний диаметр 34,7 39,6

Мы видим, что с увеличением высоты сосны в среднем растет диаметр ее ствола. Однако сосны заданной высоты имеют распределение диаметров с довольно большим рассеянием. Если в среднем, например, 26-метровые сосны толще, чем 25-метровые, то для отдельных сосен это соотношение нарушается.
В рассмотренном примере мы имеем две случайные величины: - высота сосны и - диаметр ее ствола. Каждому значению xвеличины соответствует множество значений , которые она может принимать с различными вероятностями. Говорят, что между и существует корреляционная зависимость.
Этот пример приводит нас к следующему определению.
Две случайные величины и находятся в корреляционной зависимости, если каждому значению одной из этих величин соответствует определенное распределение вероятностей другой.
Для характеристики корреляционной зависимости между случайными величинами вводится понятие коэффициента корреляции.

* При подсчетах мы принимаем диаметры стволов и высоты всех сосен, попавших в данный интервал, равными серединам соответствующих интервалов.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение неизвестных параметров распределения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). Случайным событием (или просто событием) называется всякое явление,

Условная вероятность. Теорема умножения вероятностей.
Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В. Рассмотрим следующий пример. Пусть брошены д

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную посл

Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Математическое ожидание случайной величины и его свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом: m1 - число подшипников с внешним диаметром х1

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги