рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Условная вероятность. Теорема умножения вероятностей.

Условная вероятность. Теорема умножения вероятностей. - раздел Философия, ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности. Во Многих Задачах Приходится Находить Вероятность Совмещения Событий А...

Во многих задачах приходится находить вероятность совмещения событий А и В, если известны вероятности событий А и В.

Рассмотрим следующий пример. Пусть брошены две монеты. Найдем вероятность появления двух гербов. Мы имеем 4 равновероятных попарно несовместных исхода, образующих полную группу:

  1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись
3-й исход надпись герб
4-й исход надпись надпись


Таким образом, P(герб,герб)=1/4.

Пусть теперь нам стало известно, что на первой монете выпал герб. Как изменится после этого вероятность того, что герб появится на обеих монетах? Так как на первой монете выпал герб, то теперь полная группа состоит из двух равновероятных несовместных исходов:

  1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись


При этом только один из исходов благоприятствует событию (герб, герб). Поэтому при сделанных предположениях Р(герб,герб)=1/2. Обозначим через А появление двух гербов, а через В — появление герба на первой монете. Мы видим, что вероятность события Аизменилась, когда стало известно, что событие B произошло.

Новую вероятность события А, в предположении, что произошло событие B, будем обозначать PB(А).

Таким образом, Р(A)=1/4; PB(А)=1/2

Теорема умножения. Вероятность совмещения событий А и В равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие осуществилось, т. е.

P(AB)=P(A)PA(B) (4)

 

Доказательство. Докажем справедливость соотношения (4), опираясь на классическое определение вероятности. Пусть возможные исходы Е1, Е2, ..., ЕN данного опыта образуют полную группу равновероятных попарно несовместных событий, из которых событию Aблагоприятствуют M исходов, и пусть из этих M исходов L исходов благоприятствуют событию B. Очевидно, что совмещению событий A и Bблагоприятствуют L из N возможных результатов испытания. Это дает

; ;


Таким образом,


Поменяв местами A и B, аналогично получим

(5)


Из формул (4) и (5) имеем

(6)


Теорема умножения легко обобщается на любое , конечное число событий. Так, например, в случае трех событий A1, A2, A3 имеем *


В общем случае

(7)


Введем теперь следующее определение.
Два события A и B называются независимыми, если предположение о том, что произошло одно из них, не изменяет вероятность другого, т. е. если

и (8)

 

Из соотношения (6) вытекает, что из двух равенств (8) одно является следствием другого.

Пусть, например, событие A — появление герба при однократном брссании монеты, а событие B — появление карты бубновой масти при вынимании карты из колоды. Очевидно, что события A и B независимы.

В случае независимости событий A к B формула (4) примет более простой вид:

(9)


т. е. вероятность совмещения двух независимых событий равна произведению вероятностей этих событий.

События А1, А2, ..., Аn называются независимыми в совокупности, если вероятность наступления каждого из них не меняет своего значения после того, как одно или несколько из остальных событий осуществились.

Исходя из этого определения, в случае независимости событий А1, А2, ..., Аn между собой в совокупности на основании формулы (7) имеем

(10)

 

Пример 1. Какова вероятность того, что при десятикратном бросании монеты герб выпадет 10 раз ?

Решение: Пусть событие Ai — появление герба при i-м бросании. Искомая вероятность есть вероятность совмещения всех событий Ai(i=1,2,3,...,10), а так как они, очевидно, независимы в совокупности, то применяя формулу (10), имеем


Но P(Ai)=1/2 для любого i; поэтому

 


Пример 2. Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа станок не потребует внимания рабочего, для первого станка равна 0,9, для второго — 0,8, для третьего — 0,7. Найти: 1) вероятность р того, что в течение часа ни один из трех станков не потребует внимания рабочего; 2) вероятность того, что в течение часа по крайней мере один из станков не потребует внимания рабочего.

Решение:
1) Искомую вероятность р находим по формуле (10):

 


2) Вероятность того, что в течение часа станок потребует внимания рабочего для первого станка равна 1—0,9=0,1, для второго и для третьего станков она соответственно равна 1—0,8=0,2 и 1—0,7=0,3. Тогда вероятность того, что в течение часа все три станка потребуют внимания рабочего, на основании формулы (10) составляет


Событие A, заключающееся в том, что в течение часа все три станка потребуют внимания рабочего, противоположно событию , состоящему в том, что по крайней мере один из станков не потребует внимания рабочего. Поэтому по формуле (3) получаем

 

 

Пример 3. Из урны, содержащей 3 белых и 7 черных шаров, вынимают два шара. Какова вероятность того, что оба шара окажутся белыми ?

Решение: Эта задача уже была решена в п. 3 с помощью классического определения вероятности. Решим ее, применяя формулу (5). Извлечение двух шаров равносильно последовательному их извлечению. Обозначим через А появление белого шара при первом извлечении, а через В — при втором. Событие, состоящее в появлении двух белых шаров, является совмещением событий А и В. По формуле (5) имеем


Но Р(А)=3/10; РA(В)=2/9, поскольку после того, как был вынут первый белый шар, в урне осталось 9 шаров, из которых 2 белых. Следовательно,

 

– Конец работы –

Эта тема принадлежит разделу:

ОСНОВНЫЕ ПОНЯТИЯ. Классическое определение вероятности.

Классическое определение вероятности... Как было сказано выше при большом числе n испытаний частота P A m n... Это обстоятельство позволяет находить приближенно вероятность события опытным путем Практически такой способ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Условная вероятность. Теорема умножения вероятностей.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Случайные события. Частота. Вероятность.
Теория вероятностей — математическая наука, изучающая закономерности массовых случайных явлений (событий). Случайным событием (или просто событием) называется всякое явление,

Формула полной вероятности.
Пусть событие A может произойти только вместе с одним из попарно несовместных событий H1, H2, ..., Hn, образующих полную группу. Тогда, если произошло событие A,

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ.
Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность нас

Дискретные случайные величины.
Рассмотрим случайную величину * , возможные значения которой образуют конечную или бесконечную посл

Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина

Равномерное распределение.
Пусть сегмент [a,b] оси Ox есть шкала некоторого прибора. Допустим, что вероятность попадания указателя в некоторый отрезок шкалы пропорциональна длине этого отрезка и не зависит от м

Нормальное распределение.
Говорят, что случайная величина нормально распределена или подчиняется закону распределе

Двумерные случайные величины.
Часто приходится решать задачи, в которых рассматриваются события, описываемые не одной, а несколькими — в частности, двумя случайными величинами. Так если станок-автомат штампует цилиндрические ва

Математическое ожидание случайной величины и его свойства.
Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом: m1 - число подшипников с внешним диаметром х1

Линейные функции случайных величин.
Пусть - нормально распределенная случайная величина с параметрами

Леммы Чебышева.
В этом пункте докажем следующие две леммы, принадлежащие Чебышеву* Лемма 1. Пусть

Закон больших чисел Чебышева.
Имеет место следующее утверждение. Пусть - последовательность попарно независимых случайн

Закон больших чисел Бернулли.
Пусть производится последовательность независимых испытаний, в результате каждого из которых может наступить или не наступить событие А, причем вероятность наступления этого события одна и т

Теорема Ляпунова.
Часто приходится иметь дело с такими случайными величинами, которые являются суммами большого числа независимых случайных величин. При некоторых весьма общих условиях оказывается, что эта сумма име

Основной закон ошибок.
Когда мы производим некоторое измерение, то на его результат влияет большое количество факторов, которые порождают ошибки измерений. Ошибки измерений в основном можно подразделить на три группы: 1)

Определение неизвестной функции распределения.
Пусть мы имеем дело с непрерывной случайной величиной , значения которой получены из наблюдений. Ра

Определение неизвестных параметров распределения.
C помощью гистограммы мы можем приближенно построить график плотности распределения случайной величины

Коэффициент корреляции.
Как мы знаем, если и

Функции и линии регрессии.
Пусть и

Анализ линейной корреляции по опытным данным.
Одной из задач математической статистики является исследование корреляционной зависимости между случайными величинами. Пусть проведено n опытов, в результате которых получены следующие значе

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги