рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Система сил

Система сил - раздел Философия, ТЕОРЕТИЧЕСКАЯ МЕХАНИКА     1.26.1. Момент Силы Относительно Оси...

 

 

1.26.1. Момент силы относительно оси

 

 

 
 

Положим, что к у телу в точке А приложена сила F (рис. 1.66).

 

Для того чтобы вычислить момент этой силы относительно оси OZ, следует спроецировать силу Fна плоскость Р, перпендикулярную оси OZ, а затем вычислить момент её проекции FОХY на эту плоскость относительно точки О пересечения оси OZ с плоскостью Р, приписав этому моменту знак «+» или «–». Отсюда следует, что момент силы относительно оси является скалярной величиной.

Моментом силы F относительно оси OZ называется взятое со знаком «+» или «–» произведение модуля проекции FOXY силы F на плоскость, перпендикулярную оси, на её плечо h1 относительно точки О пересечения оси с плоскостью P.

 

MОZ(F) = ± FОХY·h1.

 

Момент силы относительно оси считается положительным, если, смотря навстречу оси OZ, можно видеть проекцию FОХY силы F , стремящейся вращать плоскость Р относительно оси OZ в сторону, противоположную вращению часовой стрелки.

Момент силы относительно оси изображается отрезком, отложенным на оси OZ от точки О в положительном направлении, если MOZ(F) > 0, и в отрицательном – если MOZ(F) < 0.

Момент силы относительно оси равен нулю в двух случаях:

1) если FОХY = 0, т. е. линия действия силы параллельна оси;

2) если h1 = 0, т. е. линия действия силы пересекает ось.

Таким образом, если сила и ось лежат в одной плоскости, то момент силы относительно оси равен нулю.

 

 

1.26.2. Аналитические выражения моментов

силы относительно координатных осей

 

 

Разложим силу Fна компоненты по координатным осям OX, OY, OZ (рис. 1.67):


F = FОХ + FOY + FOZ.

Смотря с положительного направления отсчёта каждой из координатных осей, определим, какие из компонент FOX, FOY, FOZ вызывают вращение параллелепипеда относительно этих осей. При этом плечами сил FOX, FOY, FOZ относительно соответствующих координатных осей называются кратчайшие расстояния от линий их действия до соответствующих осей. Так, плечо силы FOY относительно оси ОХ равно модулю координаты Z, а плечо силы FOZ относительно оси ОХ равно модулю координаты Y.

Как и ранее, момент силы относительно оси считается положительным, если, смотря с положительных направлений координатных осей, можно видеть силы FOX, FOY, FOZ, поворачивающие параллелепипед в стороны, противоположные вращению часовой стрелки.

 

MOX(F) = FOZ·IYI – FOY·IZI;

MOY(F) = FOX·IZI – FOZ·IXI;

MOZ(F) = FOY·IXI – FOX·IYI.

 

В полученных выражениях IXI, IYI, IZI – модули координат точки приложения силы F.

Таким образом, для того чтобы определить момент силы относительно оси, силу F раскладывают на компоненты по координатным осям и затем находят моменты составляющих этих компонент относительно соответствующих координатных осей.

Необходимо еще раз отметить, что силы, параллельные координатным осям, вращения параллелепипеда относительно этих осей не производят.

 

 

1.26.3. Приведение пространственной произвольной

системы сил к заданному центру

 

 

Пространственная произвольная система сил – система сил, линии действия которых как угодно произвольно расположены в пространстве.

 

В качестве примера рассмотрим (рис. 1.68) пространственную систему сил (F1, F2, F3). При этом сила F1 лежит в плоскости OXY и параллельна оси ОY. Сила F2 лежит в плоскости OYZ и параллельна оси OZ. Сила F3 лежит в плоскости OXZ и параллельна оси OX.

Последовательно применяя метод Пуансо к заданной системе сил, приведём её к началу систему отсчёта OXYZ. Тогда система сил (F1, F2, F3) будет эквивалентна системе сил (F1, F2, F3) и системе присоединённых пар сил (MO(F1), MO(F2), MO(F3)), приложенных в точке О. Так как система векторов приложена в одной точке, то одноимённые векторы можно сложить. В результате этих операций получим главный вектор сил R* = F1 + F2 + F3 и главный момент присоединённых пар сил M* = MO(F1) + MO(F2) + MO(F3).


Таким образом, система сил (F1, F2, F3) заменена одной силой R* и одной парой сил с моментом M*. Согласно методу Пуансо главный вектор сил R* не зависит от положения точки приведения и может быть помещён в любую точку пространства.

Полученный вывод можно распространить на любую произвольную пространственную систему сил.

Модуль и направление главного вектора R* определяют по формулам:

;

cos(R*, i) = ∑ FiOX/R*;

cos(R*, j) = ∑ FiOY/R*;

cos(R*, k) = ∑ FiOZ/R*.

 

Модуль и направление главного момента М* определяют по следующим формулам:

;

cos(М*, i) = ∑МiOX*;

cos(М*, j) = ∑МiOY*;

cos(М*, k) = ∑МiOZ*.

 

Момент каждой из сил относительно координатных осей вычисляют по формулам:

MiOX = FiOZ·IYiI – FiOY·IZiI;

MiOY = FiOX·IZiI – FiOZ·IXiI;

MiOZ = FiOY·IXiI – FiOX·IYiI.

 

 

1.26.4. Уравнения равновесия

пространственной системы сил

 

 

Напомним, что к внешним силам относятся активные силы FiE и реакции RiE внешних связей.

Аналитические условия равновесия пространственной произвольной системы сил выражаются совокупностью следующих уравнений:

Σ+ Σ= 0;

Σ+ Σ= 0;

Σ+ Σ= 0;

Σ MOX(FiE) + Σ MOX(RiE) = 0;

Σ MOY(FiE) + Σ MOY(RiE) = 0;

Σ MOZ(FiE) + Σ MOZ(RiE) = 0.

 

Таким образом, для равновесия пространственной произвольной системы сил необходимо и достаточно, чтобы суммы проекций активных сил и реакций внешних связей на координатные оси системы отсчёта, а также и суммы моментов этих сил относительно соответствующих осей равнялись нулю.

 

Для пространственной системы сил, линии действия которых параллельны оси OZ, аналитические условия равновесия имеют вид:

 

Σ+ Σ= 0;

Σ MOX(FiE) + Σ MOX(RiE) = 0;

Σ MOY(FiE) + Σ MOY(RiE) = 0.

 

Для пространственной сходящейся системы сил имеем три уравнения равновесия:

Σ+ Σ= 0;

Σ+ Σ= 0;

Σ+ Σ= 0.

 

1.26.5. Типы связей в пространстве

 

 

 
 

На рис. 1.69 изображен шаровый шарнир. Он представляет собой шар, который может вращаться как угодно внутри сферической поверхности. Центр шара остается неподвижной точкой, через которую проходит линия действия реакции RA.

 

Направление реакции RA заранее неизвестно, поэтому её раскладывают на компоненты XA, YA, ZA по координатным осям OX, OY, OZ:

RA = XA + YA + ZA.

 
 

На рис. 1.70 изображена механическая система, на которую наложены связи: подпятник в точке А и цилиндрический шарнир в точке В.

Направления реакций в точках А и В заранее неизвестны, поэтому их раскладывают на компоненты по координатным осям.

RA = XA + YA + ZA; RB = XB + YB.

На рис. 1.71 изображена механическая система, на которую наложена связь – жёсткая заделка в пространстве.


Эта связь не позволяет перемещаться телу в пространстве в любом направлении вдоль координатных осей системы отсчёта и совершать вращательные движения относительно этих осей. Реакция такой связи состоит из трёх сил XA, YA, ZA и трёх реактивных моментов MAX, MAY, MAZ.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Федеральное агентство по образованию... Сибирская государственная автомобильно дорожная академия СибАДИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Система сил

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

А. М. Лукин, Д. А. Лукин, В. В. Квалдыков
Л84 Теоретическая механика (разделы «Статика», «Кинематика»):Учебно-методическое пособие для студентов заочной и дистанционной форм обучения при подготовке дипломированного специал

Требования
к обязательному минимуму содержания основной образовательной программы при подготовке дипломированных специалистов по направлению «СТРОИТЕЛЬСТВО».  

Цели и задачи дисциплины
Целью дисциплины является формирование у студентов знаний в области теоретической механики – фундаментальной дисциплины физико-математического цикла, которая является базой для

ОБЩИЕ ПОЛОЖЕНИЯ
    В полном курсе теоретической механики студенты изучают три её раздела: статику, кинематику и динамику. Назначение изучаемого предмета – дать будущим специал

Контрольных работ
1. Полностью записать текст условия задания и пояснить его чертежом или схемой. Выписать из условия задания исходные данные и составить алгоритм решения. Решение задания выполнять по этапам, поясня

Следствие 1
  Не изменяя кинематического состояния тела, силу можно переносить

Связи и реакции связей
    Несвободное тело – тело, на перемещения которого в пространстве наложены ограничения.  

Шарнирно-подвижная и неподвижная опоры
   

Проекции силы на ось и плоскость
       

Аналитический способ сложения сил
    Проекция равнодействующей сходящейся системы сил на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

Алгоритм решения задач статики
    Как правило, в задачах статики по известным активным силам FiE требуется определить реакции Ri

На плоскую сходящуюся систему сил
Два стержня АС и ВС соединены шарнирно в узле С, к которому через блок D подвешен груз 1 весом 12 Н (рис. 1.33). Определить реакции стержней АС, ВС, если угол a = 60о.

Пара сил
    Пару сил в механике рассматривают как одно из основных понятий, наряду с понятием силы. Пара сил – система двух параллельных, против

Условия равновесия пар сил
  Теорема. Для равновесия пар сил, действующих на тело, необходимо и достаточно, чтобы величина векторного момента эквивалентной пары сил равнялась нулю или ве

Вектор момента силы относительно точки
    Момент силы F относительно точки О изображается вектором MО(F), приложенным в э

Относительно точки
    На рис. 1.39 изображены сила F и точки А и В, расположенные в плоскости OYZ.    

Приведение силы к заданному центру
(метод Пуансо)     Теорема. Силу F, не изменяя её действие на тело, можно перенести из точки её прилож

К заданному центру
    Теорема. Любую произвольную систему сил, действующую на тело, можно привести в общем случае к силе и паре сил.   Т

Плоской произвольной системы сил
    Плоская произвольная система сил – система сил, линии действия которых произвольно расположены в одной плоскости.  

Другие типы связей на плоскости
       

В стержнях плоской фермы
Методологию расчёта усилий в стержнях плоской фермы покажем на примере выполнения курсового задания С 2, которое входит в контрольную работу обучающегося.    

Вырезания узлов
    При использовании способа вырезания узлов вырезают узел фермы и прикладывают к нему: активные силы; реакции внешних связей; реакции стержней

Решение.
А. Определение реакций RA, XB, YB внешних связей Порядок решения задач статики приведён в подразделе 1.7 данного пособия. Рассматривается

Вырезания узлов
Вырезаем узел, где приложена активная сила F3, и изображаем его на чертеже. Реакции S11, S12 растянутых стержней

Решение.
M(I)(FiE) + Σ M(I)(RiE) = 0 = F2·b – S7·b·tg(α) = 0; (1)

Конструкций
    Статически определимые задачи – задачи, в которых реакции внешних связей находятся из уравнений равновесия.   В та

Для составных конструкций
    Существует целый класс задач на равновесие составной конструкции, которые могут быть решены методами статики твёрдого тела. Решение таких задач проводится по следующ

Сцепление и трение скольжения
    Рассмотрим равновесие тела лежащего на горизонтальной шероховатой поверхности OXY (рис. 1.73).  

ТЕРМИНОВ, ОПРЕДЕЛЕНИЙ, ПОНЯТИЙ
(по разделу «Статика») Механика – наука о механическом движении и механическом взаимодействии материальных тел.  

Скорость точки
    Скорость – векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчёта.   С

Ускорение точки
    Ускорение – векторная величина, характеризующая быстроту изменения величины и направления скорости.   Ускорение вс

Движения точки
       

Естественные координатные оси
    Точка перемещается в пространстве по заданному уравнению движения S = f(t) (рис. 2.12). Проведём в точке М кривой АВ соприкасающуюся плоскость, н

Скорость точки
    Скорость точки при естественном способе задания движения определяется по формуле V = τ·(dS/dt) = τ

Ускорение точки
    Ускорение а точки всегда направлено в сторону вогнутости траектории движения, лежит в соприкасающейся плоскости (см. рис. 2.14) и находится п

С помощью мгновенного центра скоростей
    Другой простой и наглядный метод определения скоростей точек при плоскопараллельном движении тела основан на понятии мгновенного центра скоростей. М

Мгновенного центра скоростей
    Случай 1   Пусть известен век

Сложное движение точки
    В ряде случаев при решении задач механики оказывается целесообразным (а иногда и необходимым) рассматривать движение точки (или тела) одновременно в двух системах от

Изменение направления относительной скорости точки вследствие вращательного переносного движения.
Например, если человек идет равномерно вдоль радиуса равномерно вращающейся платформы, то относительной скоростью является скорость его движения вдоль радиуса, а переносной – скорость той точки пла

ТЕРМИНОВ, ОПРЕДЕЛЕНИЙ, ПОНЯТИЙ
(по разделу «Кинематика») Кинематика – раздел механики, в котором изучаются движения материальных тел без учёта их масс и действующих на них сил.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги