рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Изменение направления относительной скорости точки вследствие вращательного переносного движения.

Изменение направления относительной скорости точки вследствие вращательного переносного движения. - раздел Философия, ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Например, Если Человек Идет Равномерно Вдоль Радиуса Равномерно Вращающейся П...

Например, если человек идет равномерно вдоль радиуса равномерно вращающейся платформы, то относительной скоростью является скорость его движения вдоль радиуса, а переносной – скорость той точки платформы, где он находится в данный момент времени (рис. 2.46).

 

Пусть в момент времени t человек занимает на платформе положение, показанное на рис. 2.46,а, а в момент времени t + ∆t положение, показанное на рис. 2.46,б.

Так как относительное движение равномерное и прямолинейное, то относительное ускорение человека ar = 0. Однако за время ∆t относительная скорость изменяется по направлению, вследствие вращения подвижной системы отсчёта, закрепленной на платформе.

За время ∆t происходит изменение модуля переносной скорости от Ve = II·r до Ve = II·R вследствие относительного перемещения человека. Указанные изменения относительной Vr и переносной Ve скоростей и вызывают появление кориолисова ускорения.

Модуль кориолисова ускорения определится как модуль векторного произведения:

ac = 2·ωe·Vr·sin(,Vr),

где ωe = II – модуль вектора угловой скорости переносного вращения.

Кориолисово ускорение равно нулю в трёх случаях:

1) если ωe = 0, т. е. в случае поступательного переносного движения или в момент обращения в нуль угловой скорости непоступательного переносного движения;

2) если Vr = 0, т. е. в случае относительного покоя точки или в момент равенства нулю модуля относительной скорости движущейся точки;

3) если sin(,Vr) = 0, т. е. в случае, когда вектор относительной скорости Vr и вектор переносной угловой скорости параллельны (Vr ||).

Направление кориолисова ускорения определяется по правилу векторного произведения. ac Vr, ac и направлено в сторону, откуда поворот вектора к вектору Vr для совмещения их направлений виден происходящим против хода часовой стрелки. Поворот осуществляется на угол меньше 180о.


Пример. Пусть векторы и Vr лежат в горизонтальной плоскости и направлены так же, как и единичные векторы i, j правой системы отсчёта (рис. 2.47).

 

По правилу векторного произведения вектор ac ускорения Кориолиса направлен по отношению к векторам и Vr так же, как и единичный вектор k по отношению к векторам i и j.

Для определения направления кориолисова ускорения используется правило Жуковского: для определения направления ускорения Кориолиса необходимо относительную скорость Vr точки спроецировать на плоскость, перпендикулярную оси переносного вращения, и повернуть эту проекцию в той же плоскости на угол 90о в сторону переносного вращения.


Для иллюстрации правила Жуковского рассмотрим движение точки по образующей конуса с относительной скоростью Vr под углом α от его вершины к основанию (рис. 2.48).

Модуль кориолисова ускорения равен

ac = 2·ωe·Vr·sin(180о – α),

где ωe – модуль вектора угловой скорости переносного вращения.

На рис. 2.48 – проекция относительной скорости Vr на плоскость (плоскость на рисунке заштрихована), перпендикулярную оси переносного вращения. Направление ускорения Кориолиса ac совпадает с направлением единичного вектора i1 неподвижной системы отсчёта O1X1Y1Z1.

Для закрепления теоретического материала необходимо выполнить курсовое задание К 4.

– Конец работы –

Эта тема принадлежит разделу:

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

Федеральное агентство по образованию... Сибирская государственная автомобильно дорожная академия СибАДИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Изменение направления относительной скорости точки вследствие вращательного переносного движения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

А. М. Лукин, Д. А. Лукин, В. В. Квалдыков
Л84 Теоретическая механика (разделы «Статика», «Кинематика»):Учебно-методическое пособие для студентов заочной и дистанционной форм обучения при подготовке дипломированного специал

Требования
к обязательному минимуму содержания основной образовательной программы при подготовке дипломированных специалистов по направлению «СТРОИТЕЛЬСТВО».  

Цели и задачи дисциплины
Целью дисциплины является формирование у студентов знаний в области теоретической механики – фундаментальной дисциплины физико-математического цикла, которая является базой для

ОБЩИЕ ПОЛОЖЕНИЯ
    В полном курсе теоретической механики студенты изучают три её раздела: статику, кинематику и динамику. Назначение изучаемого предмета – дать будущим специал

Контрольных работ
1. Полностью записать текст условия задания и пояснить его чертежом или схемой. Выписать из условия задания исходные данные и составить алгоритм решения. Решение задания выполнять по этапам, поясня

Следствие 1
  Не изменяя кинематического состояния тела, силу можно переносить

Связи и реакции связей
    Несвободное тело – тело, на перемещения которого в пространстве наложены ограничения.  

Шарнирно-подвижная и неподвижная опоры
   

Проекции силы на ось и плоскость
       

Аналитический способ сложения сил
    Проекция равнодействующей сходящейся системы сил на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

Алгоритм решения задач статики
    Как правило, в задачах статики по известным активным силам FiE требуется определить реакции Ri

На плоскую сходящуюся систему сил
Два стержня АС и ВС соединены шарнирно в узле С, к которому через блок D подвешен груз 1 весом 12 Н (рис. 1.33). Определить реакции стержней АС, ВС, если угол a = 60о.

Пара сил
    Пару сил в механике рассматривают как одно из основных понятий, наряду с понятием силы. Пара сил – система двух параллельных, против

Условия равновесия пар сил
  Теорема. Для равновесия пар сил, действующих на тело, необходимо и достаточно, чтобы величина векторного момента эквивалентной пары сил равнялась нулю или ве

Вектор момента силы относительно точки
    Момент силы F относительно точки О изображается вектором MО(F), приложенным в э

Относительно точки
    На рис. 1.39 изображены сила F и точки А и В, расположенные в плоскости OYZ.    

Приведение силы к заданному центру
(метод Пуансо)     Теорема. Силу F, не изменяя её действие на тело, можно перенести из точки её прилож

К заданному центру
    Теорема. Любую произвольную систему сил, действующую на тело, можно привести в общем случае к силе и паре сил.   Т

Плоской произвольной системы сил
    Плоская произвольная система сил – система сил, линии действия которых произвольно расположены в одной плоскости.  

Другие типы связей на плоскости
       

В стержнях плоской фермы
Методологию расчёта усилий в стержнях плоской фермы покажем на примере выполнения курсового задания С 2, которое входит в контрольную работу обучающегося.    

Вырезания узлов
    При использовании способа вырезания узлов вырезают узел фермы и прикладывают к нему: активные силы; реакции внешних связей; реакции стержней

Решение.
А. Определение реакций RA, XB, YB внешних связей Порядок решения задач статики приведён в подразделе 1.7 данного пособия. Рассматривается

Вырезания узлов
Вырезаем узел, где приложена активная сила F3, и изображаем его на чертеже. Реакции S11, S12 растянутых стержней

Решение.
M(I)(FiE) + Σ M(I)(RiE) = 0 = F2·b – S7·b·tg(α) = 0; (1)

Конструкций
    Статически определимые задачи – задачи, в которых реакции внешних связей находятся из уравнений равновесия.   В та

Для составных конструкций
    Существует целый класс задач на равновесие составной конструкции, которые могут быть решены методами статики твёрдого тела. Решение таких задач проводится по следующ

Система сил
    1.26.1. Момент силы относительно оси        

Сцепление и трение скольжения
    Рассмотрим равновесие тела лежащего на горизонтальной шероховатой поверхности OXY (рис. 1.73).  

ТЕРМИНОВ, ОПРЕДЕЛЕНИЙ, ПОНЯТИЙ
(по разделу «Статика») Механика – наука о механическом движении и механическом взаимодействии материальных тел.  

Скорость точки
    Скорость – векторная величина, характеризующая быстроту и направление движения точки в данной системе отсчёта.   С

Ускорение точки
    Ускорение – векторная величина, характеризующая быстроту изменения величины и направления скорости.   Ускорение вс

Движения точки
       

Естественные координатные оси
    Точка перемещается в пространстве по заданному уравнению движения S = f(t) (рис. 2.12). Проведём в точке М кривой АВ соприкасающуюся плоскость, н

Скорость точки
    Скорость точки при естественном способе задания движения определяется по формуле V = τ·(dS/dt) = τ

Ускорение точки
    Ускорение а точки всегда направлено в сторону вогнутости траектории движения, лежит в соприкасающейся плоскости (см. рис. 2.14) и находится п

С помощью мгновенного центра скоростей
    Другой простой и наглядный метод определения скоростей точек при плоскопараллельном движении тела основан на понятии мгновенного центра скоростей. М

Мгновенного центра скоростей
    Случай 1   Пусть известен век

Сложное движение точки
    В ряде случаев при решении задач механики оказывается целесообразным (а иногда и необходимым) рассматривать движение точки (или тела) одновременно в двух системах от

ТЕРМИНОВ, ОПРЕДЕЛЕНИЙ, ПОНЯТИЙ
(по разделу «Кинематика») Кинематика – раздел механики, в котором изучаются движения материальных тел без учёта их масс и действующих на них сил.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги