рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общая характеристика АСУТП.

Общая характеристика АСУТП. - раздел Философия, АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ Асутп – Это Человеко-Машинная Система, Обеспечивающая Эффективное Функциониро...

АСУТП – это человеко-машинная система, обеспечивающая эффективное функционирование технологического объекта на основе быстрой и точной информации о состоянии объекта и выработки соответствующих команд управления объектом с помощью средств автоматизации и вычислительной техники. При этом под технологическим объектом управления (ТОУ) понимается технологическое оборудование иреализуемый в нем технологический процесс производства или транспортирования продукции.

Совокупность совместно функционирующих АСУТП и ТОУ называется автоматизированным технологическим комплексом (АТК).

АСУТП отличает преобладание задач оперативного управления ТОУ над задачами организационно-экономического типа, характерных для автоматизированных систем управления предприятием (АСУП), объединением (АСУ О), отраслью (ОАСУ). То есть АСУ ТП функционирует в одном темпе с управляемым объектом, или в реальном масштабе времени. Социально-экономические причины появления АСУТП обусловлены тем, что все труднее становится найти работников на тяжелые, малопроизводительные ручные производственные операции. Поэтому АСУТП призваны облегчить труд человека, в том числе в условиях опасных и вредных для здоровья, а также своевременно обнаруживать отклонения режимов технологического процесса и воздействовать на него в целях устранения отклонений.

АСУТП, в отличии от АСР локального типа, решает задачи управления технологическим процессом как единым целым во всей сложности взаимосвязи его структур и параметров, автоматизируя принятие решений по оптимальному управлению этим процессом . Алокальные АСР, входящие в состав АСУТП, автономно реализуют в последней функции управления отдельными частями технологического процессаили оперативного контроля за их режимами и параметрами.

Наибольшее распространение получили три принципа построения АСУТП: централизованное управление; супервизорное управление; децентрализованное (распределение) управление.

При централизованной АСУТП надежность ее определяется надежностью устройств связи с объектом (УСО) и управляющей вычислительной машины (УВМ), и при выходе их из строя нормальное функционирование технологического оборудования невозможно.

Более широкими возможностями и надежностью обладают АСУТП, в которых непосредственное регулирование объектами осуществляется локальными АСР, а УВМ выполняет функции «советчика» в так называемом супервизорном режиме. Основная задача супервизорного управления – автоматическое поддержание процесса вблизи оптимальной рабочей точки, а также возможность оператора использовать плохо формализованную информацию о ходе технологического процесса, вводя через УВМ коррекцию установок, параметров алгоритмов регулирования в локальные контуры (например, при изменении состава сырья и состава вырабатываемой продукции). При большом же числе каналов контроля, регулирования и управления, большой длине линий связи в АСУТП, децентрализацияструктуры системы становится принципиальным методом повышения живучести АСУТП, снижение стоимости и эксплутационных расходов.

Наиболее перспективным направлением распределенных АСУТП признано автоматизированное управление процессами с распределенной архитектурой на базе функционально-целевой и топологической децентрализации объекта управления.

Функционально-целевая децентрализацияозначает разделение сложного процесса или системы на меньшие части – подпроцесса или подсистемы по функциональному признаку (например, переделы технологического процесса, режимы работы агрегатов и т.д.), имеющие самостоятельные цели функционирования.

Топологическая децентрализацияозначает возможности территориального (пространственного) разделение процесса на функционально-целевые подпроцессы, чтобы минимизировать суммарную длину линий связи, образующих вместе с локальными системами управления сетевую структуру.

Технической основной современных распределенных систем управления являются микропроцессоры (МП) и микропроцессорные системы (МПС). Использование МП и МПС (в т.ч. микро-эвм) для решения задач распределенных АСУТП дает возможность достичь следующих целей:

1- заменить аналоговые технические средства на цифровые там , где переход к цифровым средствам повышает точность, расширяет функциональные возможности и увеличивает гибкость систем управления; 2- заменить технические средства с жесткой логикой на программируемые устройства или контроллеры; 3- заменить одну мини-ЭВМ системой из нескольких микро-ЭВМ, когда необходимо обеспечить децентрализованное управление производством или технологическим процессом с повышенной надежностью и живучестью или когда возможности мини-ЭВМ полностью не используются.

– Конец работы –

Эта тема принадлежит разделу:

АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ

Омский государственный технический университет... С Ф Абдулин...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общая характеристика АСУТП.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Омск 2002
АВТОМАТИЗАЦИЯ ХИМИЧЕСКИХ ПРОИЗВОДСТВ: Учебное пособие / С.Ф. Абдулин. – Омский государственный технический университет: Омск, изд-во ОмГТУ, 2002. – 150 с.   Рас

Автоматического управления
  Замена ручного труда человека в операциях управления на управление с помощью технических средств называется автоматизацией. Технические средства, с помощью которых выполняютс

Основы метрологии и техники измерений
Базовой основой современных АСУТП являются системы автоматического контроля (САК), позволяющие быстро получить достоверную измерительную информацию о режимных параметрах технологических процессов,

Основные метрологические характеристики ИП
Качество ИП характеризуется рядом показателей, важнейшими из которых являются: погрешность, чувствительность, цена деления шкалы, предел измерения и динамическая погрешность. Погрешность х

Резисторные датчики
один из наиболее широко применяемых принципов преобразования физических величин основан на изменении сопротивления чувствительных элементов, которые могут быть реализованы в виде потенциометров, те

Емкостные датчики
эти датчики имеют разнообразные области применения, однако наибольшее распространение они получили для измерения малых перемещений и физических величин, легко преобразуемых в перемещение, например

Электромагнитные датчики
Электромагнитные датчики получили широкое применение в различных областях науки и техники благодаря достаточно высокой точности, широким функциональным возможностям, надежности, особенн

Методы измерения важнейших технологических параметров.
2.3.1.Измерение температуры Температура – один из распространенных параметров, который приходится контролировать в различных средах: газовой, паровой, жидкостной и твердой. В совр

Термометры расширения
К ним относится жидкостные стеклянные, биметаллические и дилатометрические термометры. Жидкостные стеклянные термометры применяются для измерения температуры жидких и газообразных с

Термометры сопротивления
Термометры сопротивления основаны на зависимости сопротивления проводников (металлов) и полупроводников от температуры R =f(t). При этом сопротивление металлических термометров (медн

Термоэлектрические термометры
Основаны на термоэлектрическом эффекте, заключающемся в том, что в замкнутой цепи, состоящей из двух разнородных проводников, возникает электрический ток, если хотя бы два места соединения (спая) п

Технологических параметров
  Цель автоматического регулирования, являющегося частным случаем автоматического управления, состоит в обеспечении заданного алгоритма функционирования – закона изменения некоторого

Объекты регулирования и их свойства
Обоснованный выбор и расчет регулятора в первую очередь определяется достоверностью математической модели объекта регулирования (ОР) (машина, аппарат, технологический процесс), к которому подключае

Автоматические регуляторы и законы регулирования
  3.3.1. Классификация линейных регуляторов По функциональному назначению и конструктивномуисполнению регуляторы можно квалифицировать следующим образом: 1.

Усилительно-преобразовательные устройства
Усилитель является одним из основных элементов большинства систем автоматического контроля, регулирования и управления, так как мощность, развиваемая чувствительным элементом (датчиком) недостаточн

Исполнительные механизмы и регулирующие органы.
  Исполнительное устройство АСР состоит из двух функциональных блоков: исполнительного механизма (ИМ) и регулирующего органа (РО). Исполнительный механизм под действием управляющего в

Управление приводами
Задачей системы управления приводами является организация пуска и торможения машин и механизмов, переход с одной ступенискоростина другую, реверс и осуществление этих операций в определенной послед

Непрерывного действия
  Исследование элементов и автоматических систем регулирования (управления) связано с изучением процессов, в них протекающих. Характер этих процессов описывается с помощью различных з

Дифференциальные уравнения для элементов и систем
Вывод дифференциальных уравнений элементов системы – сложная творческая работа, при которой допускаются определенная идеализация процесса, пренебрежение отдельными факторами, рассмотрение частных с

Дискретные автоматические системы регулирования
  3.10.1. Понятия о дискретных АСР и их классификация В непрерывных системах существуют только непрерывные сигналы, являющиеся непрерывными функциями времени. В дискретных АС

Общая характеристика аппаратурной основы АСУТП
  Внедрение микропроцессоров в самые различные устройства автоматики на всех уровнях управления создало насыщение цифровым «интеллектом» большинство устройств, составляющих аппаратурн

Элементы техники проектирования систем автоматизации
5.1.1. Краткие сведения о типовых технологических процессах   Несмотря на большое разнообразие химических производств, между ними есть определенное сходство по содержанию в и

Автоматизация производства нефтепродуктов
5.2.1. Автоматизация управления процессами первичной переработки нефти Обезвоженная и обессоленная нефть (после блока ЭЛОУ) поступает в колонну отбензинивания 1 (рис.5.4), где происходит и

Процесс замедленного коксования
Коксование нефтяных остатков и высококипящих дистиллятов вторичного происхождения используют для получения мало­зольного электродного кокса, применяемого в алюминиевой про­мышленности. Одновременно

Некоторых органических продуктов
5.3.1. Автоматизация управления процессом производства олифинов Производство олефинов основано на термическом разложении углеводородного сырья на ряд продуктов и выделении этих про­дуктов

Синтетического каучука
  5.4.1. Автоматизация производства бутадиен-стирольного каучука 5.4.1.1. Технологическая схема производства. Бутадиен-концентрат, стирол-ректификат и ст

Автоматизация производства изопренового каучука
5.4.2.1. Технологическая схема производства. Осушенная углеводородная шихта по­дается на охлаждение в холодильник-испаритель 1, охлаждаемый кипящим пропаном (рис. 5.2

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги