рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Варіанти розв’язків

Варіанти розв’язків - раздел Философия, ЗАГАЛЬНА ХАРАКТЕРИСТИКА ДИНАМІЧНОГО ПРОГРАМУВАННЯ Варіантами Розв’Язків Є Можливі Значення Об'ємів Поставок ...

Варіантами розв’язків є можливі значення об'ємів поставок , .

Твердження. Оптимальним розв’язком задачі (14)-(16) є одна із крайніх точок допустимої множини розв’язків, зумовлених обмеженнями (15)-(16).

Доведення цього твердження витікає з того, що шукається мінімум суми опуклих вверх функцій .

Визначимо координати крайніх точок.

ü З урахування обмежень (15) і не можуть бути рівними нулю одночасно (інакше величина буде від’ємною). Значить допустимий розв’язок {} і {}, має наступну властивість:

, (17)

ü Врахуємо опуклість вверх функцій . За означенням мінімум опуклої вверх функції перебуває на кінці допустимої області (рис. 24).

 

 

 

 

Рис. 24.

 

Мінімально допустимому значенню = 0 відповідає максимально допустиме значення (=+); максимально допустимому значенню (=+)) відповідає мінімально допустиме значення (=0). Отже, для крайніх точок області справедливо:

(18)

Умови (18) еквівалентні співвідношенню

= 0 (19)

З умов (17) і (18) випливає справедливість такого твердження: замовлення на доставку нової партії не надходить, якщо на початку періоду k є запас >0 і навпаки, якщо здійснюється поставка нової партії, то на початок відповідного періоду є нульовий запас. Із цього твердження випливає дуже важлива властивість розглянутої ЗУЗ: замовлення дорівнює попиту за ціле число періодів.

В силу вищесказаного можливі значення змінних такі:

=0 (не виконується для k=1, якщо );

або =;

або =+;

…....

або =++ …(замовлення дорівнює попиту за ціле число періодів).

– Конец работы –

Эта тема принадлежит разделу:

ЗАГАЛЬНА ХАРАКТЕРИСТИКА ДИНАМІЧНОГО ПРОГРАМУВАННЯ

ЗАГАЛЬНА ХАРАКТЕРИСТИКА ДИНАМІЧНОГО ПРОГРАМУВАННЯ... Геометрична інтерпретація задач ДП... Приклад багатоетапної операції...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Варіанти розв’язків

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Геометрична інтерпретація задач ДП
  Припустимо, що стан системи характеризується деякою точкою в просторі . Ця

Приклад багатоетапної операції
Керівництво концерну, що складається з k підприємств, складає план інвестицій на n років. На початку цього періоду концерн має у своєму розпорядженні суму в розмірі K од. вартості. Ці кошти на поча

Етап 1. Планування кроку .
Робимо припущення про те, чим може закінчитися крок . Позначимо їх

Етап . Планування кроку 1.
Зазвичай відомо, у якому стані система може перебувати на початку кроку 1. Тому ніяких припущень про це не треба робити (рис. 6). Враховуючи те, що всі останні кроки вже умовно сплановані, управлін

ЗАДАЧА ПРО НАЙКОРОТШИЙ ШЛЯХ
Кожен багатокроковий процес прийняття рішень може бути зведений до задачі знаходження найкоротшого шляху (ЗЗНШ) у спрямованій ациклічній слоїстій мережі (САСМ). Саме з такої точки зору і буд

Приклад застосування алгоритму АЗП по дугах, що виходять
Використовуючи алгоритм зворотньої прогонки по дугах, що виходять, знайти найкоротший шлях з вершини 1 у вершину 10 (рис. 10).  

Завдання для самостійної роботи
1. Перетворити ациклічну мережу (рис. 11) до слоїстої. Розв’язати задачу, застосувавши алгоритм зворотної прогонки.  

Планування кроку 1.
Виділимо всі можливі стани, які можуть мати місце наприкінці кроку 1, тобто визначимо множину :

Планування кроку 2.
Наприкінці цього кроку система може перебувати в одному з трьох станів (вершин): 5, 6 й 7. У стан 5 можна потрапити по дугах

Відмінності алгоритмів прямої і зворотної прогонок
Вибір того чи іншого напрямку розрахунків (що співпадає з напрямком мережі або є зворотнім до нього) залежить від постановки вихідної задачі ЗНШ. Розглянемо чотири можливі ситуації, що впливають на

Контрольні завдання
Розв’язати задачу знаходження найкоротшого шляху від вершини A до вершини N у спрямованій ациклічній мережі, зображеній на рис. 18. Довжини дуг наведені у табл. 3.  

Побудова рекурентного співвідношення задачі 4.1.1
Дана задача, по суті, не є часовою. Але її можна звести до багатокрокового процесу прийняття рішень, якщо припустити, що різні продукти повинні вироблятися один за одним, тобто: на першому

Побудова рекурентного співвідношення задачі 4.1.2
У даному випадку в якості ресурсу, що розподіляється, виступають кошти, що вкладаються в модернізацію. При такій змістовній інтерпретації задачу називають задачею про оптимальне використання кап

Приклад розв’язання ЗОВК
Нехай фірма має n=3 дочірніх підприємств, на модернізацію цих трьох підприємств виділено = 6 млн. одиниць вартості.

Планування кроку 1.
Вважається, що на цьому етапі приймається рішення про модернізацію першого підприємства. Для цього можуть бути використані кошти в кількості від 0 до 6 (оскільки в нашому випадку

Планування кроку 2.
На цьому кроці приймається рішення щодо модернізації підприємств 1 і 2. Для цього можуть бути використані кошти в кількості від 0 до

Планування кроку 3.
На цьому етапі приймається рішення про модернізацію всіх трьох підприємств (1, 2 і 3). Для цього фірма виділила кошти в кількості

Завдання для самостійної роботи
  Задача 1.n=3, = 4 млн. одиниць вартості. Проект

Контрольні завдання
  Розв’язати задачу про оптимальне використання капіталовкладень. Кількість підприємств, сумарний об'єм капіталовкладень і відповідних величин

Постановка задачі
Підприємцеві потрібно визначити число працівників у кожному з наступних періодів. Виробничі завдання для кожного пер

Теоретичне обґрунтування алгоритму зворотньої прогонки для розв’язку задачі про найм робочої сили
Оскільки маємо задачу з фіксованим початком, то рекомендується застосовувати алгоритм зворотньої прогонки. Нехай

Алгоритм ПП розв’язку задачі
Визначимо основні елементи моделі динамічного програмування. Ø Етап відповідає

Приклад розв’язання ЗВРС
Розв’яжемо таку ЗВРС: число місяців =3. Необхідна кількість працівників по місяцях:

Контрольні завдання
Розв’язати задачу про використання робочої сили. Вихідні дані наведені в табл. 8. Таблиця 8 Варі-ант Склад-ність

Адитивність цільової функції і етапи задачі
У задачах ДП цільова функція (ЦФ) повинна мати властивість адитивності: значення критерію, досягнуте за весь

Принцип занурення
У ЗЗНШ потрібно було визначити (якщо застосовується АЗП) - довжину найкоротшого шляху від вершини 1 до вершини

Принцип оптимальності Белмана
Введемо поняття підшляху для спрямованої мережі. Шлях є підшляхом шляху

Постановка задачі
Розглянемо задачу зі скінченною кількістю періодів, нестаціонарним детермінованим попитом, миттєвою поставкою і миттєвим споживанням. Змістовна постановка задачі Нехай маєм

Основне рекурентне співвідношення
Оскільки і задані ( = 0 ), вибір

Планування кроку 1.
На цьому етапі ми визначаємо мінімальні витрати для першого періоду за умови, що на його кінець запаси повинні бути рівними нулю. Оскільки

Планування кроку 2.
На цьому етапі ми визначаємо мінімальні витрати для перших двох періодів за умови, що на кінець другого запаси повинні бути рівні нулю. У цьому випадку можливі два варіанти розв’язку: - по

Контрольні завдання
Розв’язати задачу управління запасами. Вихідні дані наведені в табл. 11 .Після одержання розв’язку виконати перевірку. Таблиця 11 Ва- рі-

Елементи динамічної моделі
Етап. Етапу ставиться у відповідність планування складу компоненти

Основне рекурентне співвідношення
Нехай – максимальна величина надійності перших

Приклад розв’язання задачі
Нехай прилад складається з компонент,

Контрольні завдання
Розв’язати задачу про надійність. Вихідні дані наведені в табл. 15 .Після одержання розв’язку виконати його перевірку. Таблиця 15 Ва-рі-ант

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги