рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ГІДРАВЛІЧНІ МАШИНИ

ГІДРАВЛІЧНІ МАШИНИ - раздел Философия, ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД   Гідравлічні Машини Служать Для Перетворення Механічної Енергі...

 

Гідравлічні машини служать для перетворення механічної енергії двигуна в енергію рідини, що переміщається (насоси) або гідравлічної енергії потоку рідини в механічну енергію (гідравлічні двигуни).

До гідравлічних машин відносяться:

- насоси;

- гідродвигуни;

- гідротурбіни, які являють собою один з різновидів гідродвигуна.

Найбільш поширеними гідравлічними машинами є насоси.

 

3.1. Насоси

 

Насоси – це гідравлічні машини, які перетворюють механічну енергію двигуна в енергію рідини, що переміщається, підвищуючи її тиск. Різниця тисків рідини в насосі обумовлює переміщення рідини.

За принципом дії розрізняють динамічні та об’ємні насоси.

 

3.1.1. Основні характеристики насосів

 

До них відносяться: продуктивність, напір і потужність.

Продуктивність (подача) Q3/год.) - об’єм рідини, що подається насосом в нагнітальний трубопровід в одиницю часу.

Напір Н (м) характеризує питому енергію, котра надається насосом одиниці ваги рідини, що перекачується. Напір можна уявити як висоту, на яку може бути піднятий один кілограм рідини за рахунок енергії, яку надає їй насос.

Для визначення напору насосу використовують рівняння Бернуллі. Розглянувши це рівняння для перерізів I-I, і II-II (рис. 38), отримали рівняння для напору насосу:

 

. (3.1)

 

З (3.1) ми бачимо, що напір насосу дорівнює сумі трьох складових:

- висоти підйому рідини в насосі hг;

- різниці п’єзометричних напорів (р2 - р1),

- загальним втратам напору при русі рідині по трубопроводу (в всмоктувальному та напірному) Dhвтр.

 

(3.2)

 

де Dhтер – втрати напору на тертя у всмоктувальному та

нагнітальному трубопроводу, м;

Dhм.о. – втрати напору на місцеві опори у всмоктувальному та

нагнітальному трубопроводу, м.

 

 

Рис. 38. Схема насосної установки:

 

1, 3 – ємності; 2, 4 – всмоктувальний та нагнітальний трубопроводи; 5 – насос.

 

Рівняння (3.1) використовують при підборі насосів для технологічних установок.

Якщо тиски у ємностях 1 і 2 (рис. 38) однакові , то рівняння (3.1) набуває вигляду:

 

. (3.3)

 

При русі рідини по горизонтальних трубопроводах (hг =0):

 

. (3.4)

 

В разі рівності тисків в ємностях і горизонтальному трубопроводі:

 

. (3.5)

 

Висота всмоктування. Вертикальна відстань від рівню води в ємності до центру насосу Нвсм – називається висотою всмоктування; втрати енергії у всмоктувальному трубопроводі Dhвтр.всм називається втратами при всмоктувані.

Всмоктування рідини насосом відбувається під дією різниці тисків у ємності - і на вході в насос .

 

, (3.6)

- швидкість зниження рівню в ємності.

Коли w1»0, тоді:

 

. (3.7)

 

З (3.7) висота всмоктування насосу зростає зі зростанням р1 в приймальній ємності і зменшується зі зростанням тиску рвсм, швидкості рідини і втрати напору в усмоктувальному трубопроводі.

Якщо рідина перекачується з відкритої ємності, то р1»ратм.

Тиск рвак на вході в насос повинен перевищувати тиск рн.п. насиченої пари рідини при температурі всмоктуванні, оскільки в іншому випадку рідина в насосі почне кипіти.

 

. (3.8)

 

 

При перекачуванні з відкритих водоймищ висота всмоктування не може перевищувати висоту стовпа рідини, що перекачується, яка відповідає атмосферному тискові. При температурі 200C висота всмоктування на рівні моря навіть теоретично не може перевищувати 10 м. Зі збільшенням температури внаслідок підвищення тиску висота всмоктування Нвсм зменшується.

При перекачуванні гарячих рідин насос встановлюється нижче рівня приймальної ємності, щоб забезпечити деякий підпір з боку всмоктування, або створюють надлишковий тиск у приймальній ємності. Таким же чином перекачують рідини з великою густиною і в’язкістю.

На припустиму висоту всмоктування впливає також кавітація. ЇЇ сутність: при високих швидкостях обертання робочих коліс відцентрових насосів і при перекачуванні гарячих рідин відбувається інтенсивне пароутворення в рідині, що знаходиться в насосі. Бульбашки пари потрапляють разом з рідиною в область більш високих тисків, де миттєво конденсуються. Рідина заповнює порожнини, в яких знаходилась пара, а це супроводжується гідравлічними ударами, шумом і стуком. Кавітація призводить до швидкого руйнування насосів в результаті гідравлічних ударів і посиленої корозії в період пароутворення.

Максимальна практична висота всмоктування при перекачування води у залежності від температури складає:

 

t0 C

 

Потужність.

 

Корисна потужність витрачається на надання рідині енергії.

 

. (3.10)

 

Потужність на валу більша за у зв’язку зі втратами в насосі, які враховуються за допомогою коефіцієнту корисної дії насосу :

 

. (3.11)

 

Величина ηн характеризує досконалість конструкції та економічність експлуатації насосу; вона відображає відносні (у порівнянні з Nк) втрати потужності в насосі і є добутком трьох величин:

 

. (3.12)

 

У рівнянні (3.12) - коефіцієнт подачі, або об’ємний к.к.д (Q, Qтеор – дійсна та теоретична продуктивності насосу), враховує втрати продуктивності насосу (через зазори, сальники і т.ін.). Гідравлічний к.к.д. (Н, Нтеор – дійсний та теоретичний напір), враховує втрати напору при русі рідини через насос. Механічний к.к.д. ηмех характеризує втрати потужності на механічне тертя в насосі.

Значення ηн залежить від продуктивності насосу, його конструкції і степені зношення:- для відцентрових, - для відцентрових великої потужності, - для поршневих.

При виборі електродвигуна для насосу слід враховувати втрати потужності внаслідок механічних втрат в передачі від електродвигуна до насосу і у самому електродвигуні. Їх враховують за допомогою к.к.д. передачі ηпер та к.к.д. двигуна ηдв. Тоді потужність, що споживається двигуном :

 

 

. (3.15)

 

 

де - має назву к.к.д. насосної установки.

Установочна потужність двигуна Nуст розраховується за величиною Nдв з урахуванням можливих перевантажень в момент пуску насосу, які виникають у зв’язку з необхідністю подолання інерції маси рідини, що покоїться.

 

, (3.16)

 

де b - коефіцієнт запасу потужності. Він залежить від потужності двигуна Nдв:

 

 

, кВт <1 1-5 5-50 >50
b 2¸1,5 1,5¸1,2 1,2¸1,15 1,1

 

3.1.2. Динамічні насоси

 

В динамічних насосах рідина переміщається під дією сил на незамкнений об’єм рідини, який безперервно сполучається із входом в насос та виходом з нього. Ці насоси мають велику продуктивність, високий коефіцієнт корисної дії (к.к.д.), прості в експлуатації і тому широко використовується в промисловості.

Динамічні насоси за видом поділяються на лопатеві та насоси тертя.

 

3.1.2.1. Лопатеві насоси

 

В лопатевих насосах енергія передається рідині при обтіканні лопаток робочого колеса насосу, що обертається.

Лопатеві насоси поділяються на відцентрові та осьові. У відцентрових насосах рідина рухається через робоче колесо від центру до периферії. В осьових - у напрямку осі колеса.

 

3.1.2.1.1. Відцентрові насоси

Принцип дії та типи насосів

У відцентрових насосах усмоктування й нагнітання рідини відбувається рівномірно і безперервно під дією відцентрової сили, що виникає при обертанні лопаток робочого колеса, яке знаходиться у спіралеподібному корпусі.

Бувають одно- і багатоступінчасті відцентрові насоси.

В одноступінчастому відцентровому насосі (рис. 39) рідина зі всмоктувального трубопроводу (на рисунку не показано) поступає уздовж осі робочого колеса 2 в корпус 4 і, потрапляючи на лопатки 3, набуває обертального руху. Відцентрова сила викидає рідину в канал перемінного перерізу (равлик) 5 між корпусом і робочим колесом, у якому швидкість рідини зменшується до значення, яке дорівнює швидкості в нагнітальному трубопроводі 6.

У відповідності з рівнянням Бернуллі відбувається перетворення кінетичної енергії потоку рідини в статичний напір, що забезпечує підвищення тиску; на вході в колесо створюється знижений тиск і рідина з приймальної ємності безпосередньо поступає в насос.

 

 

Рис. 39. Схема одноступінчастого відцентрового насосу:

 

1 – вал; 2 – робоче колесо; 3 – лопатки; 4 – корпус; 5 – равлик; 6 – дифузор.

 

Тиск, що створюється відцентровим насосом, залежить від швидкості обертання робочого колеса. Внаслідок значних зазорів між колесом і корпусом насосу розрідження, яке виникає при обертанні колеса, недостатнє для підйому рідини по всмоктувальному трубопроводу, якщо в ньому і у корпусі насосу немає рідини, тому перед пуском насос заливають рідиною. Щоб рідина не виливалась, на кінці всмоктувальної труби установлюють зворотний клапан. Напір одноступінчастих насосів обмежений і не перевищує 50 м. Для створення більш великих напорів використовуються багатоступінчасті насоси, які мають кілька робочих коліс (до 5), які розташовані в одному корпусі послідовно.

Рідина з колеса на колесо поступає по відвідному каналу. Напір дорівнює напору одного колеса, помноженому на кількість коліс.

 

– Конец работы –

Эта тема принадлежит разделу:

ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД

ГІДРАВЛІКА І ГІДРО ПНЕВМОПРИВОД... КУРС ЛЕКЦІЙ... Навчальний посібник Херсон Рецензенти Бондарев В Т...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ГІДРАВЛІЧНІ МАШИНИ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Херсон - 2009
ББК 30.123 (4 Укр.) Я73 Ч-90 УДК 62. Рекомендовано міністерством освіти і науки України як навчальний посібник для студентів

Основні фізичні властивості рідин
  При виведенні основних закономірностей в гідравліці користуються такими поняттями: Елементарний об’єм – це об’єм сукупних молекул, які знаходяться на м

Густина й питома вага
Густина – маса рідини в одиниці об’єму   , кг/м3

Диференціальні рівняння статики Ейлера
Закони гідравліки можуть бути виражені математично через диференціальні рівняння для суцільного середовища. В об’ємі рідини виділяємо елементарний паралелепіпед з ребрами довжиною dx, d

Основне рівняння гідростатики
  Якщо на рідину, що перебуває у нерухомій судині, діє лише сила ваги, то такий стан рідини називають абсолютним спокоєм (відносно Землі). Нехай рідина перебуває в судині й на

Тиск рідини на плоску стінку
  Тиск, що утворює рідина у будь-якій точці відкритої судини, залежить від глибини занурення h цієї точки й густини рідини r і може бути визначений з рівняння:

Тиск рідини на криволінійну циліндричну стінку
Для циліндричної криволінійної поверхні сила тиску F може бути отримана як геометрична сума вертикальної й горизонтальної складових (рис. 14):  

Швидкість і витрата
  Розглянемо рух рідини у трубі постійного перерізу. Основними характеристиками є швидкість і витрати рідини. Витратою називається кількість рідини, що протікає через переріз потоку з

Моделі руху рідини
  При вивченні руху рідини найбільшого поширення набула струминна модель, яка базується на поняттях, що розглядаються нижче.    

Гідравлічний радіус і еквівалентний діаметр
Це основні розрахункові лінійні розміри. Гідравлічний радіус R (м) - це відношення площі затопленого перерізу трубопроводу або каналу (S, м2) до змоче

Рівняння нерозривності (суцільності) потоку
Встановимо загальну залежність між швидкостями в потоці рідини, для якої дотримується умова суцільності, або нерозривності руху, тобто не утворюється пусток, не заповнених рідиною. Виділим

Диференціальне рівняння Нав’є – Стокса
При русі реальної (в’язкої) рідини в потоці діють сили: масові, гідростатичного тиску, тертя, а також сили стиску й розтягування. Нав’є і Стоксом виведена система диференціаль

Диференціальні рівняння руху Ейлера
В різних точках рідини, що рухається, в результаті дії зовнішніх сил виникає тиск, який називають гідродинамічним. Припустимо, що на рідину, яка рухається, діють об’ємні сили, проекції яких на осі

Рівняння Бернуллі
2.5.1. Виведення рівняння Подальший розвиток системи диференціальних рівнянь Ейлера провів Бернуллі. Він помножив рівняння системи почленно на прир

Принцип виміру швидкості і витрати рідини
  Рівняння Бернуллі використовується для визначення швидкостей, витрат і часу витоку рідини з резервуарів. Для визначення швидкості рідини може бути застосований диференціаль

Рівномірний рух рідини
Розглянемо рух рідини у нахиленому трубопроводі. Виділяємо у трубопроводі відрізок довжиною l (рис. 22а).  

Розподіл швидкості по горизонтальному перерізу труби
Розглянемо ламінарний рух рідини у трубопроводі (рис. 23а), в якому: r0 – повний радіус, r – поточний радіус, t – дотична напруга, v – вектор швидкості

Середня швидкість при ламінарному русі
Для практичних розрахунків необхідно знати середнє значення швидкості. Напишемо вираження для елементарної витрати рідини dQ, що проходить через елементарну площинку dS кільцевого

Втрати напору при русі рідини
Враховуючи, що J = Dh : l, вираження (2.47) запишемо у вигляді:   . (2.48)

Турбулентний рух
При турбулентному режимі руху на відміну від ламінарного характер потоку порушується. Всі цівки перемішуються, траєкторії рухомих частинок набувають вельми складної форми. Чисельні експери

Втрати напору при русі рідини
Розрахунок гідравлічного опору при русі реальних рідин по трубопроводах є одним з основних прикладних питань гідродинаміки. Важливість визначення втрати напору hвтр (або

Витікання рідини через отвори та насадки
  Розглянемо витрату рідини при її витіканні крізь круглий малий отвір в тонкому днищі або у стінці відкритої посудини, в якій підтримується постійний рівень

Гідравлічний розрахунок сифонів
При розрахунку сифону визначають граничні значення висоти Z підйому трубопроводу над верхнім рівнем рідини, а також витрату Q (рис. 32).  

Гідравлічний удар
  Гідравлічний удар – це підвищення або зниження тиску, яке виникає при різкій зміні швидкостей течії у напірному трубопроводі (в результаті швидкого закриття або відкриття засувок аб

Гідравлічний розрахунок трубопроводів
Гідравлічний розрахунок трубопроводів проводиться з метою визначення основних геометричних параметрів для пропуску визначеної витрати рідини і втрат напору. В залежності від довжини трубопроводі

Розрахунок простого трубопроводу
  Гідравлічний розрахунок простих трубопроводів зводиться до вирішення однієї з таких задач: - визначення витрати Q (м3/с) при заданих довжині L (м),

Техніко-економічний розрахунок трубопроводів
  Питання про найвигідніші швидкості, а отже, про діаметр магістрального трубопроводу вирішується техніко-економічним розрахунком. Найвигідніший діаметр трубопроводу буде так

Основне рівняння відцентрових машин Ейлера
В каналах між лопатками робочого колеса рідина, яка рухається уздовж лопаток, одночасно здійснює обертальний рух разом з колесом. При русі в міжлопатевому каналі кожна частина рідини з одн

Закони пропорційності
Закони пропорційності розповсюджуються на геометрично подібні лопатеві машини. Геометрично подібними лопатевими машинами називаються такі, в яких усі відповідні розміри знаходяться в однакових спів

Характеристики відцентрових насосів
  Роботу насосу можна охарактеризувати системою трьох кривих: Н=f(Q); N=f(Q) i h=f(Q) при сталому значені частоти оберті

Коефіцієнт швидкохідності
  Усю розмаїтість різних типів коліс відцентрових та осьових насосів по принципу їхньої геометричної та динамічної подібності можна поділити на кілька груп, які характеризують

Спільна робота насосів
  На практиці використовують паралельне й послідовне з’єднання насосів. У випадку, якщо продуктивності одного насосу не вистачає, то вмикають в роботу два насоси, які з'єднують

Струминні насоси
В струминних насосах (рис. 50) робоча рідина (як правило, вода або водяна пара) з великою швидкістю із сопла 1 потрапляє в камеру змішування 2. При цьому за рахунок поверхневого тертя

Поршневі насоси
  Принцип дії і типи насосів   Всмоктування й нагнітання рідини в поршневому насосі простої дії відбувається нерівномірно: за два ходи поршня рідина один раз вс

Продуктивність
  Об’єм рідини, який всмоктується насосом за один хід поршня зліва направо при безперервному русі рідини за поршнем, дорівнює FS (позначення після формули 3.37); при відсутност

Нерівномірність подачі
Зміну продуктивності поршневого насосу за один оберт валу кривошипу можна зобразити графічно, що дає наглядне уявлення про послідовність всмоктування та нагнітання, а також можливість оцінити ступі

Шестеренні насоси
У корпусі 1 насосу (рис. 58) встановлені дві шестерні 2, одна з яких - ведуча - приводиться в обертання від електродвигуна. Між корпусом і шестернями є невеликі радіальні й тор

Гвинтові насоси
Бувають одногвинтові (однозаходні), двогвинтові й тригвинтові. Однозаходні насоси мають гвинт 3 (рис. 59), який розташований усередині (обойми) 1. Обойма з гвинтом може поміщ

Продуктивність
  Продуктивність гвинтових насосів збільшується зі зростанням числа обертів гвинта, при цьому тиск, який створює насос, залишається без зміни. Поперечний переріз ротору 2

Роторно – поршневі насоси
Подача одноциліндрових поршневих насосів, як було сказано раніше характеризуються нерівномірністю. Для більш рівномірної подачі рідини використовують багатоциліндрові поршневі насоси, циліндри яких

Насоси з обертовими поршнями
Для допоміжних цілей і, зокрема, для перекачування великих об’ємів в’язких рідин під невеликим напором (тиском), використовують насоси із зубчастими роторами (поршнями спеціальних профілів), які на

Інші види гідравлічних машин
Як було вказано на початку розділу, до гідравлічних машин, крім насосів, відносяться гідротурбіни і гідромотори. Гідротурбіною називається гідравлічний двигун, який служить для перетворення

Загальні поняття
Часто машини, між якими потрібно передати механічну енергію, мають характеристики, що не відповідають одна одній, наприклад, треба передавати механічну енергію між валами, які обертаються з різними

Гідромуфти і гідротрансформатори
  4.2.1. Гідромуфти   Гідромуфти використовують для захисту двигунів від небезпечних перевантажень і для зміни числа обертів валів різних м

Гідроапаратура та інші елементи гідроприводу
Гідроапаратурою називають пристрої, які служать для управління потоками рідини, зміни або підтримання тиску або витрати, а також зміни напрямку руху потоку. Регулювання може бути ручним або автомат

Гідророзподільні пристрої
Гідророзподільні пристрої поділяють по типу запірно-регулюючих елементів. Вони призначені для розподілу і зміни напрямку потоку рідини між вузлами і елементами гідроприводу. За конструкційними озна

Дросельні пристрої
Використовуються в гідроприводах для обмеження або регулювання витрати рідини і являють собою гідравлічні опори. Ними можуть бути нерегульовані гідравлічні опори (гідравлічні демпфери) і регульован

Клапани
Це найбільш розповсюджені елементи гідроприводів. За їхньою допомогою захищають вузли гідроприводу від перевантажень, встановлюють певний напрямок потоку, заданий тиск, розподіляють потік на частин

Загальні положення
  У сучасній техніці і, зокрема, в системах автоматизації виробничих процесів застосовують разом з гідравлічними, пневматичні приводи і механізми, засновані на використовуванні як

Типи поршневих компресорів
  Поршневі компресори виготовляються переважно з нерухомими циліндрами і, рідше – з циліндрами, що обертаються, виконаними у вигляді багатоциліндрового зіркоподібного блоку. Останні к

Органи розподілу і регулювання компресора
  Розподіл газу в компресорах здійснюється, в основному, за допомогою клапанів і, рідше, золотників, причому, клапани виконуються самодіючими і несамодіючими. Самодіючі клапани можуть

Роторні пластинчасті компресори
  Друге місце за поширеністю після поршневих посідають пластинчасті компресори. Принцип дії і конструктивні елементи пластинчастих компресорів (рис. 73) аналогічні пластинчастим насос

Пневматичні двигуни
  Пневматичні об'ємні двигуни, як і гідравлічні, мають низку істотних переваг – високий пусковий момент, малу масу, що припадає на одиницю потужності, вибухобезпечність та ін. Вони по

Пневмодвигуни обертального руху
  Як пневматичні двигуни обертального руху (пневмомотори) застосовують переважно пластинчасті й поршневі машини і рідше – машини інших типів (шестеренчасті, гвинтові та ін.) Принцип ї

Модуль 1
Гідростатика і гідродинаміка*   1. Система рівнянь гідростатики Ейлера. 2. Тиск рідини у судині, що обертається навколо вертикальної осі.

Варіанти завдань
  № вар. Питання № вар. Питання

Гідравлічні машини
  1. Висота всмоктування насосу. 2. Потужність, що споживається насосом. 3. Напір, що створюється відцентровим насосом. 4. Вплив конструкції лопаток на напі

Варіанти завдань
  № вар. Питання № вар. Питання

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги