рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Продуктивність

Продуктивність - раздел Философия, ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД   Продуктивність Гвинтових Насосів Збільшується Зі Зростанням Ч...

 

Продуктивність гвинтових насосів збільшується зі зростанням числа обертів гвинта, при цьому тиск, який створює насос, залишається без зміни.

Поперечний переріз ротору 2 (рис. 60) в кожному місці являє собою окружність діаметром d. Поверхня ротору утворена обертанням сину­соїди профілю bed навколо осі 0 і одночасно переміщенням її уздовж осі. У відповідності з цим при повороті ротору на 360° осьове переміщення утворюючої синусоїди дорівнює кроку ротору t. Центр перерізу ротору зміщений відносно його осі симетрії 0 на величину е. При обертанні ротор виконує рух висотою h.

 

 

Рис. 60. До розрахунку продуктивності гвинтового насосу:

 

1 – корпус; 2 – ротор; 3 – обойма; h – діаметр, який описує крайня точка поверхні ротору, т – профільована внутрішня поверхня обойми; е – відстань між осями обойми і гвинта.

 

Крок гвинтової поверхні обойми to6 дорівнює подвоєному кроку t ро­тору. В поперечному перерізі гвинтова поверхня обойми 3 являє собою два кола K, центри яких 01 і 02 знаходяться на відстані 4е один від одного; радіуси окружностей дорівнюють радіусу перерізу гвинта .

Загальна площа F прохідного перерізу обойми дорівнює сумі площ двох вказаних окружностей і площі прямокутника 4ed, тобто .

Внутрішню поверхню обойми можна представити як поверхню, утворену складним переміщенням вказаного перерізу при його обертанні навколо осі обойми і при одночасному русу уздовж цієї осі. При цьому усі точки на периферії перерізу обойми описують гвинтові лінії, в результаті при повороті ротору на кут j=2p переріз переміщається на величину кроку to6. Осьове переміщення h при цьому

 

. (3.45)

 

 

Принцип дії гвинтового насосу базується на щільному контакті профільного гвинтового ротору 2 с обоймою 3 корпусу 1. При обертанні ротору між його поверхнею і внутрішньою гвинтовою поверхнею обойми 3 утворюються замкнені порожнини а, об’єм яких при обертанні насосу безперервно змінюється. При цьому відбувається безперервне витиснення рідини.

При обертанні ротору будь-який його поперечний переріз переміщається у відповідному поперечному перерізі обойми, утворюючи місяцеподібні замкнені порожнини (відмічено крапковою штриховкою). Загальна площа двох поперечних перерізів цих порожнин дорівнює різниці площ внутрішнього перерізу обойми і зовнішнього перерізу ротору, який дорівнює 4ed. Замкнені порожнини розповсюджуються на довжину кроку to6 обойми, контури витка мають перемінну площу поперечного перерізу, яка змінюється від нуля до 4ed. Для будь-якого кутового положення ротору в поперечний переріз пари обойма - ротор потрапляють дві замкнені порожнини перемінного перерізу, причому, коли одна порожнина зникає повністю (положення, зображене на рис. 60,а), інша порожнина має найбільшу площу перерізу, яка дорівнює 4ed. Зміна перерізу двох замкнених порожнин при різних положе­ннях ротору представлена на рис. 60.

Продуктивність одногвинтового насосу визначається загальною зміною об’ємів замкнених порожнин в одиницю часу. При цьому, коли порожнина на одному боці збільшується в об’ємі, у ній розвивається вакуум і вона заповнюється рідиною (відбувається цикл всмоктування). В якийсь момент ця порожнина замикається (відсікається від порожнини всмоктування) і починає переміщатися до нагнітального кінця обойми, витісняючи з неї рідину, яка її заповнює, в результаті зменшення свого об’єму. За один оберт рідина в замкненому об’ємі переміщається уздовж осі обойми на величину її кроку tоб і витискується через постійний прохідний переріз 4ed. Внаслідок цього розрахункова подача такого насосу при сталому обертанні не буде мати пульсацій.

Оскільки вісь ротору переміщається при обертанні відносно осі внутрішньої профільованої поверхні обойми, привод ротору повинен здійснюватися за допомогою кардану.

У відповідності з наведеним розрахункова подача насосу визначається за формулою:

 

, (3.46)

 

де h висота перерізу обойми; d – діаметр поперечного перерізу ротору; n – частота обертання ротору; е – ексцентриситет; hv – об’ємний к.к.д.

З метою підвищення герметичності і відповідно – об’єм­ного к.к.д. внутрішню поверхню обойми вкривають тонким шаром гуми, завдяки пружності якої можливо забезпечити посадку ротору в обойму з деяким натягом (0,3–0,5 мм).

Найбільше поширення в промисловості мають гвинтові насоси з трьома гвинтами, з котрих середній - ведучий, а два бокових меншого діаметру - ведені. Гвинти поміщені в корпусі з гладкою циліндричною поверхнею. При обертанні гвинта рідина, заповнюючи западини в нарізках, переміщається уздовж осі насосу і витісняється в лінію нагнітання.

Тиск, що створює гвинтовий насос, залежить від числа кроків гвинтової нарізки. Вона збільшується зі зростанням відношення довжини витка до його діаметру.

Гвинтові насоси використовують для перекачування високов’язких рідин. Подача Q – до 300 м3/год., тиск р – до 175 атм, швидкість обертання п – до 3000 об./хв.

Переваги: швидкохідність, компактність, безшумність, продуктивність практично не змінюється при зміні тиску.

Недоліки: досить низький к.к.д - 0,75.

 

 

3.1.3.4. Пластинчасті насоси

 

Насос складається з ротору 1 (рис. 61), який розташований ексцентрично в корпусі 2. В роторі є радіальні прорізи, в яких вільно сковзають пластини 3. При обертанні ротору пластини під дією відцентрової сили щільно притискаються до внутрішньої поверхні корпусу. При цьому серпоподібний робочий простір 4 поділяється на камери всмоктування й нагнітання. Об’єм камери всмоктування при русі пластини від всмоктувального патрубку збільшується, в результаті чого в цій камері створюється розрідження і рідина всмоктується в корпус насосу через патрубок. Після проходження пластиною точки а об’єм камери зменшується, і рідина потрапляє з насосу в нагнітальний патрубок 6.


 

Рис. 61. Пластинчастий насос:

 

1 – ротор; 2 – корпус; 3 – пластина; 4 – робочий простір; 5, 6 – нагнітальний і всмоктувальний патрубки.

 

Продуктивність пластинчастого насосу визначається за формулою:

 

, (3.47)

 

де b – ширина ротору; e – ексцентриситет насосу; n – число обертів валу; D – діаметр колодязя (розточки) в корпусі статору; z – число пластин; S – товщина пластин; hv – об’ємний к.к.д.

Подача рідини роторними насосами, у тому числі й пластин­частими, дуже рівномірна, її можна регулювати зміною кількості обертів валу (ротору). Теоретична подача роторних насосів, як і всіх об’ємних насосів, не залежить від створюваного ним напору. У дійсності виникають незначні зниже­ння подачі при підвищенні напору внаслідок протікання рідини крізь зазори усередині насосу.

 

 

– Конец работы –

Эта тема принадлежит разделу:

ГІДРАВЛІКА І ГІДРО-, ПНЕВМОПРИВОД

ГІДРАВЛІКА І ГІДРО ПНЕВМОПРИВОД... КУРС ЛЕКЦІЙ... Навчальний посібник Херсон Рецензенти Бондарев В Т...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Продуктивність

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Херсон - 2009
ББК 30.123 (4 Укр.) Я73 Ч-90 УДК 62. Рекомендовано міністерством освіти і науки України як навчальний посібник для студентів

Основні фізичні властивості рідин
  При виведенні основних закономірностей в гідравліці користуються такими поняттями: Елементарний об’єм – це об’єм сукупних молекул, які знаходяться на м

Густина й питома вага
Густина – маса рідини в одиниці об’єму   , кг/м3

Диференціальні рівняння статики Ейлера
Закони гідравліки можуть бути виражені математично через диференціальні рівняння для суцільного середовища. В об’ємі рідини виділяємо елементарний паралелепіпед з ребрами довжиною dx, d

Основне рівняння гідростатики
  Якщо на рідину, що перебуває у нерухомій судині, діє лише сила ваги, то такий стан рідини називають абсолютним спокоєм (відносно Землі). Нехай рідина перебуває в судині й на

Тиск рідини на плоску стінку
  Тиск, що утворює рідина у будь-якій точці відкритої судини, залежить від глибини занурення h цієї точки й густини рідини r і може бути визначений з рівняння:

Тиск рідини на криволінійну циліндричну стінку
Для циліндричної криволінійної поверхні сила тиску F може бути отримана як геометрична сума вертикальної й горизонтальної складових (рис. 14):  

Швидкість і витрата
  Розглянемо рух рідини у трубі постійного перерізу. Основними характеристиками є швидкість і витрати рідини. Витратою називається кількість рідини, що протікає через переріз потоку з

Моделі руху рідини
  При вивченні руху рідини найбільшого поширення набула струминна модель, яка базується на поняттях, що розглядаються нижче.    

Гідравлічний радіус і еквівалентний діаметр
Це основні розрахункові лінійні розміри. Гідравлічний радіус R (м) - це відношення площі затопленого перерізу трубопроводу або каналу (S, м2) до змоче

Рівняння нерозривності (суцільності) потоку
Встановимо загальну залежність між швидкостями в потоці рідини, для якої дотримується умова суцільності, або нерозривності руху, тобто не утворюється пусток, не заповнених рідиною. Виділим

Диференціальне рівняння Нав’є – Стокса
При русі реальної (в’язкої) рідини в потоці діють сили: масові, гідростатичного тиску, тертя, а також сили стиску й розтягування. Нав’є і Стоксом виведена система диференціаль

Диференціальні рівняння руху Ейлера
В різних точках рідини, що рухається, в результаті дії зовнішніх сил виникає тиск, який називають гідродинамічним. Припустимо, що на рідину, яка рухається, діють об’ємні сили, проекції яких на осі

Рівняння Бернуллі
2.5.1. Виведення рівняння Подальший розвиток системи диференціальних рівнянь Ейлера провів Бернуллі. Він помножив рівняння системи почленно на прир

Принцип виміру швидкості і витрати рідини
  Рівняння Бернуллі використовується для визначення швидкостей, витрат і часу витоку рідини з резервуарів. Для визначення швидкості рідини може бути застосований диференціаль

Рівномірний рух рідини
Розглянемо рух рідини у нахиленому трубопроводі. Виділяємо у трубопроводі відрізок довжиною l (рис. 22а).  

Розподіл швидкості по горизонтальному перерізу труби
Розглянемо ламінарний рух рідини у трубопроводі (рис. 23а), в якому: r0 – повний радіус, r – поточний радіус, t – дотична напруга, v – вектор швидкості

Середня швидкість при ламінарному русі
Для практичних розрахунків необхідно знати середнє значення швидкості. Напишемо вираження для елементарної витрати рідини dQ, що проходить через елементарну площинку dS кільцевого

Втрати напору при русі рідини
Враховуючи, що J = Dh : l, вираження (2.47) запишемо у вигляді:   . (2.48)

Турбулентний рух
При турбулентному режимі руху на відміну від ламінарного характер потоку порушується. Всі цівки перемішуються, траєкторії рухомих частинок набувають вельми складної форми. Чисельні експери

Втрати напору при русі рідини
Розрахунок гідравлічного опору при русі реальних рідин по трубопроводах є одним з основних прикладних питань гідродинаміки. Важливість визначення втрати напору hвтр (або

Витікання рідини через отвори та насадки
  Розглянемо витрату рідини при її витіканні крізь круглий малий отвір в тонкому днищі або у стінці відкритої посудини, в якій підтримується постійний рівень

Гідравлічний розрахунок сифонів
При розрахунку сифону визначають граничні значення висоти Z підйому трубопроводу над верхнім рівнем рідини, а також витрату Q (рис. 32).  

Гідравлічний удар
  Гідравлічний удар – це підвищення або зниження тиску, яке виникає при різкій зміні швидкостей течії у напірному трубопроводі (в результаті швидкого закриття або відкриття засувок аб

Гідравлічний розрахунок трубопроводів
Гідравлічний розрахунок трубопроводів проводиться з метою визначення основних геометричних параметрів для пропуску визначеної витрати рідини і втрат напору. В залежності від довжини трубопроводі

Розрахунок простого трубопроводу
  Гідравлічний розрахунок простих трубопроводів зводиться до вирішення однієї з таких задач: - визначення витрати Q (м3/с) при заданих довжині L (м),

Техніко-економічний розрахунок трубопроводів
  Питання про найвигідніші швидкості, а отже, про діаметр магістрального трубопроводу вирішується техніко-економічним розрахунком. Найвигідніший діаметр трубопроводу буде так

ГІДРАВЛІЧНІ МАШИНИ
  Гідравлічні машини служать для перетворення механічної енергії двигуна в енергію рідини, що переміщається (насоси) або гідравлічної енергії потоку рідини в механічну енергію (гідрав

Основне рівняння відцентрових машин Ейлера
В каналах між лопатками робочого колеса рідина, яка рухається уздовж лопаток, одночасно здійснює обертальний рух разом з колесом. При русі в міжлопатевому каналі кожна частина рідини з одн

Закони пропорційності
Закони пропорційності розповсюджуються на геометрично подібні лопатеві машини. Геометрично подібними лопатевими машинами називаються такі, в яких усі відповідні розміри знаходяться в однакових спів

Характеристики відцентрових насосів
  Роботу насосу можна охарактеризувати системою трьох кривих: Н=f(Q); N=f(Q) i h=f(Q) при сталому значені частоти оберті

Коефіцієнт швидкохідності
  Усю розмаїтість різних типів коліс відцентрових та осьових насосів по принципу їхньої геометричної та динамічної подібності можна поділити на кілька груп, які характеризують

Спільна робота насосів
  На практиці використовують паралельне й послідовне з’єднання насосів. У випадку, якщо продуктивності одного насосу не вистачає, то вмикають в роботу два насоси, які з'єднують

Струминні насоси
В струминних насосах (рис. 50) робоча рідина (як правило, вода або водяна пара) з великою швидкістю із сопла 1 потрапляє в камеру змішування 2. При цьому за рахунок поверхневого тертя

Поршневі насоси
  Принцип дії і типи насосів   Всмоктування й нагнітання рідини в поршневому насосі простої дії відбувається нерівномірно: за два ходи поршня рідина один раз вс

Продуктивність
  Об’єм рідини, який всмоктується насосом за один хід поршня зліва направо при безперервному русі рідини за поршнем, дорівнює FS (позначення після формули 3.37); при відсутност

Нерівномірність подачі
Зміну продуктивності поршневого насосу за один оберт валу кривошипу можна зобразити графічно, що дає наглядне уявлення про послідовність всмоктування та нагнітання, а також можливість оцінити ступі

Шестеренні насоси
У корпусі 1 насосу (рис. 58) встановлені дві шестерні 2, одна з яких - ведуча - приводиться в обертання від електродвигуна. Між корпусом і шестернями є невеликі радіальні й тор

Гвинтові насоси
Бувають одногвинтові (однозаходні), двогвинтові й тригвинтові. Однозаходні насоси мають гвинт 3 (рис. 59), який розташований усередині (обойми) 1. Обойма з гвинтом може поміщ

Роторно – поршневі насоси
Подача одноциліндрових поршневих насосів, як було сказано раніше характеризуються нерівномірністю. Для більш рівномірної подачі рідини використовують багатоциліндрові поршневі насоси, циліндри яких

Насоси з обертовими поршнями
Для допоміжних цілей і, зокрема, для перекачування великих об’ємів в’язких рідин під невеликим напором (тиском), використовують насоси із зубчастими роторами (поршнями спеціальних профілів), які на

Інші види гідравлічних машин
Як було вказано на початку розділу, до гідравлічних машин, крім насосів, відносяться гідротурбіни і гідромотори. Гідротурбіною називається гідравлічний двигун, який служить для перетворення

Загальні поняття
Часто машини, між якими потрібно передати механічну енергію, мають характеристики, що не відповідають одна одній, наприклад, треба передавати механічну енергію між валами, які обертаються з різними

Гідромуфти і гідротрансформатори
  4.2.1. Гідромуфти   Гідромуфти використовують для захисту двигунів від небезпечних перевантажень і для зміни числа обертів валів різних м

Гідроапаратура та інші елементи гідроприводу
Гідроапаратурою називають пристрої, які служать для управління потоками рідини, зміни або підтримання тиску або витрати, а також зміни напрямку руху потоку. Регулювання може бути ручним або автомат

Гідророзподільні пристрої
Гідророзподільні пристрої поділяють по типу запірно-регулюючих елементів. Вони призначені для розподілу і зміни напрямку потоку рідини між вузлами і елементами гідроприводу. За конструкційними озна

Дросельні пристрої
Використовуються в гідроприводах для обмеження або регулювання витрати рідини і являють собою гідравлічні опори. Ними можуть бути нерегульовані гідравлічні опори (гідравлічні демпфери) і регульован

Клапани
Це найбільш розповсюджені елементи гідроприводів. За їхньою допомогою захищають вузли гідроприводу від перевантажень, встановлюють певний напрямок потоку, заданий тиск, розподіляють потік на частин

Загальні положення
  У сучасній техніці і, зокрема, в системах автоматизації виробничих процесів застосовують разом з гідравлічними, пневматичні приводи і механізми, засновані на використовуванні як

Типи поршневих компресорів
  Поршневі компресори виготовляються переважно з нерухомими циліндрами і, рідше – з циліндрами, що обертаються, виконаними у вигляді багатоциліндрового зіркоподібного блоку. Останні к

Органи розподілу і регулювання компресора
  Розподіл газу в компресорах здійснюється, в основному, за допомогою клапанів і, рідше, золотників, причому, клапани виконуються самодіючими і несамодіючими. Самодіючі клапани можуть

Роторні пластинчасті компресори
  Друге місце за поширеністю після поршневих посідають пластинчасті компресори. Принцип дії і конструктивні елементи пластинчастих компресорів (рис. 73) аналогічні пластинчастим насос

Пневматичні двигуни
  Пневматичні об'ємні двигуни, як і гідравлічні, мають низку істотних переваг – високий пусковий момент, малу масу, що припадає на одиницю потужності, вибухобезпечність та ін. Вони по

Пневмодвигуни обертального руху
  Як пневматичні двигуни обертального руху (пневмомотори) застосовують переважно пластинчасті й поршневі машини і рідше – машини інших типів (шестеренчасті, гвинтові та ін.) Принцип ї

Модуль 1
Гідростатика і гідродинаміка*   1. Система рівнянь гідростатики Ейлера. 2. Тиск рідини у судині, що обертається навколо вертикальної осі.

Варіанти завдань
  № вар. Питання № вар. Питання

Гідравлічні машини
  1. Висота всмоктування насосу. 2. Потужність, що споживається насосом. 3. Напір, що створюється відцентровим насосом. 4. Вплив конструкції лопаток на напі

Варіанти завдань
  № вар. Питання № вар. Питання

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги