рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Коэффициент корреляции

Коэффициент корреляции - раздел Философия, МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Во Многих Исследованиях Требуется Изучить Несколько Признаков В Их Взаимной С...

Во многих исследованиях требуется изучить несколько признаков в их взаимной связи. Если вести такое исследование по отношению к двум признакам, то можно заметить, что изменчивость одного признака находится в некотором соответствии с изменчивостью другого.

В некоторых случаях такая зависимость проявляется настолько сильно, что при изменении первого признака на определенную величину всегда изменяется и второй признак на определенную величину, поэтому каждому значению первого признака всегда соответствует совершенно определенное, единственное значение второго признака. Такие связи называются функциональными.

Встречаются функциональные связи в физических и математических обобщениях. Площадь треугольника точно определяется его высотой и основанием, длина окружности – радиусом, скорость падения есть функция времени падения и ускорения силы тяжести, скорость протекания определенной химической реакции находится в зависимости от температуры.

Необходимо учесть, что функциональные связи встречаются только в идеальных условиях, когда предполагается, что никаких посторонних влияний нет.

При изучении живых объектов – диких и культурных растений, животных, микроорганизмов – приходится иметь дело со связями другого рода. Живой организм развивается в связи с условиями его жизни, под действием бесконечно большого числа факторов, которые по-разному определяют развитие разных признаков.

У живых объектов связь между любыми двумя признаками настолько часто и сильно нарушается и модифицируется, что не всегда даже может быть легко обнаружена. У растений, животных и микроорганизмов связь между признаками обычно проявляется особым образом. Каждому определенному значению первого признака соответствует не одно значение второго признака, а целое распределение этих значений при вполне определенных основных показателях этого частного распределения – средней величины и степени разнообразия. Такая связь называется корреляционной связью или просто корреляцией.

Корреляционная связь, например, между весом животных и их длиной выражается в том, что каждому значению длины соответствует определенное распределение веса (а не одно значение веса), и с увеличением длины увеличивается и средний вес животных.

Корреляционная связь не является точной зависимостью одного признака от другого, поэтому она может иметь различную степень – от полной независимости до очень сильной связи. Кроме того, характер связи между разными признаками может быть различен. Поэтому возникла необходимость определять форму, направление и степень корреляционных связей.

По форме корреляция может быть прямолинейной и криволинейной, по направлению – прямой и обратной. Степень корреляции измеряется различными показателями, введенными для установления силы связи между количественными и качественными признаками. Такими показателями являются коэффициент корреляции r, корреляционное отношение η.

Изобразить корреляционную связь двух признаков можно тремя способами:

- При помощи корреляционного ряда, состоящего из ряда пар значений, из которых одно относится к первому признаку, а другое в этой паре относится ко второму признаку, связанному с первым. На рисунке 11.1 показаны схемы корреляционных рядов при пяти степенях корреляционной связи.

- При помощи корреляционной решетки, в которой каждой особи соответствует определенная клетка. На рисунке 11.1 показана схема корреляционных решеток для пяти степеней корреляционной связи между двумя признаками. Значения первого признака нанесены по оси абсцисс, значения второго – по оси ординат.

- При помощи линии регрессии, абсциссы которой пропорциональны значениям первого признака, а ординаты – значениям второго признака, корреляционно связанного с первым. На рисунке 11.1 показаны схемы линий регрессии для пяти степеней корреляционной связи между двумя признаками.

 

       
       
       
       
       
 

 

X1
X2
Прямая полная связь; r = +1,0

 

       
       
       
       
       
 

 

X1
X2
Прямая частичная связь; r = +0,8

 

         
     
       
     
         
 

 

X1
X2
Отсутствие связи; r = 0

 

       
       
       
       
       
 

 

X1
X2
Обратная частичная связь; r= – 0,8

 

       
       
       
       
       
 

 

X1
X2
Обратная полная связь; r= – 1,0

 

Рисунок 11.1 – Схема прямолинейных корреляционных связей

Коэффициент корреляции измеряет степень и определяет направление прямолинейных связей.

Прямолинейная связь между признаками – это такая связь, при которой равномерным изменениям первого признака соответствуют равномерные (в среднем) изменения второго признака при незначительных и беспорядочных отклонениях от этой равномерности. Например, при увеличении длины тела на каждый сантиметр ширина увеличивается в среднем на 0,7 см.

При графическом изображении прямолинейных связей
(рисунок 11.1) (если по оси абсцисс отложить значения первого признака, по оси ординат – второго и полученные точки соединить) получается прямая или такая кривая, среднее которой проходит по прямой.

При изображении прямолинейных корреляционных связей в форме корреляционных решеток (рисунок 11.1) частоты внутри располагаются в форме эллипса. Большая ось этого эллипса проходит или по диагонали от угла наименьших значений (при положительной корреляционной связи), или по диагонали от угла, где сходятся наименьшие значения одного признака и наибольшие значения другого, к противоположному углу (при отрицательной корреляционной связи).

При измерении степени связи между разными признаками приходится сравнивать величины, выраженные в разных единицах измерения. Например, при измерении связи между весом животного и его длиной надо сопоставить килограммы веса с сантиметрами длины. В других случаях изменения объема сопоставляются с изменениями возраста, изменения веса руна в килограммах с изменениями содержания в нем жиропота в процентах, длина ног в сантиметрах со скоростью бега в минутах и т. д.

Проводить такие сравнения оказалось возможным путем использования нормированного отклонения, вычисляемого по формуле:

(11.1)

Нормированное отклонение служит универсальной и неименованной мерой развития признаков. Эти свойства нормированного отклонения и позволили сконструировать основной показатель корреляционной связи – коэффициент корреляции.

Основная формула, которая вскрывает сущность этого показателя, имеет совсем простую структуру:

(11.2)

где r – коэффициент корреляции;

– нормированные отклонения данных по первому и второму признаку;

n – число степеней свободы, равное в данном случае числу сравниваемых пар без одной.

Сумма произведений нормированных отклонений, входящая в формулу для коэффициента корреляции, обладает следующими тремя особыми свойствами.

Если оба признака изменяются параллельно, то сумма произведений их нормированных отклонений дает положительную величину. Если при увеличении одного признака другой уменьшается, то приходится умножать положительные числа на отрицательные и вся сумма произведений нормированных отклонений дает отрицательную величину. Поэтому коэффициент корреляции может определять направление связи: при прямых связях он положителен, а при обратных связях отрицателен.

При полных связях, когда изменения обоих признаков строго соответствуют друг другу и корреляционная связь превращается в функциональную, сумма произведений нормированных отклонений становится равной числу степеней свободы:

(11.3)

Поэтому максимальное значение коэффициента корреляции равно 1 для положительных или прямых связей:

(11.4)

для отрицательных, или обратных связей:

(11.5)

При полном отсутствии корреляционной связи между признаками сумма произведений нормированных отклонений равна нулю, и поэтому коэффициент корреляции в этих случаях тоже равен нулю:

(11.6)

Предельные значения коэффициента корреляции (r=+1,0; r=0,0;
r= –1,0) на практике встречаются крайне редко.

Пять основных видов прямолинейной корреляционной связи, соответствующие коэффициентам корреляции +1,0; +0,8; 0,0; –0,8 и
–1,0, показаны на рисунке 11.1.

Основная формула коэффициента корреляции хорошо вскрывает сущность этого показателя, но для работы крайне неудобна, особенно при многочисленных группах. Поэтому разработаны разнообразные рабочие формулы для практических расчетов в разных условиях – для малых и больших групп при малозначных и многозначных вариантах.

Все эти формулы дают одинаковый результат и применение любой из них обусловливается только удобством и простотой необходимых вычислений.

В биологических работах наиболее приемлема формула, предложенная для малых групп:

, (7.6)

где:

X1, X2 – данные первого и второго признаков;

N – число сравниваемых пар данных, или число объектов, у которых измерено по два признака;

σ1, σ2 – стандартные отклонения по первому и по второму признаку.

Применяется коэффициент корреляции в тех случаях, когда необходимо знать направление и силу связи между признаками, причем заранее известно, что эта связь может считаться прямолинейной, или когда требуется выяснить степень именно прямолинейной связи. При этом лучше проводить два этапа исследования:

1 рассмотрение графика поля регрессии;

2 расчет коэффициента корреляции непосредственно по данным.

Уже самый вид графика позволяет установить направление и степень прямолинейных связей, а также характер криволинейных связей. При известном опыте по виду графика можно получить первое представление об особенностях и силе связи между изучаемыми признаками.

– Конец работы –

Эта тема принадлежит разделу:

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Учреждение образования... Гомельский государственный университет... имени Франциска Скорины Ю М ЖУЧЕНКО...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Коэффициент корреляции

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

УЧЕБНОЕ ПОСОБИЕ
для студентов вузов, обучающихся по специальности 1-31 01 01 «Биология»     Гомель 2010  

Предмет и метод математической статистики
Предмет математической статистики – изучение свойств массовых явлений в биологии, экономике, технике и других областях. Эти явления обычно представляются сложными, вследствие разнообразия (варьиров

Понятие случайного события
Статистическая индукция или статистические заключения, как главная составная часть метода исследования массовых явлений, имеют свои отличительные черты. Статистические заключения делают с численно

Вероятность случайного события
Числовая характеристика случайного события, обладающая тем свойством, что для любой достаточно большой серии испытаний частота события лишь незначительно отличается от этой характеристики, называет

Вычисление вероятностей
Часто возникает необходимость одновременно складывать и умножать вероятности. Например, требуется определить вероятность выпадения 5 очков при одновременном бросании 2 кубиков. Искомая сумма вероят

Понятие случайной переменной
Определив понятие вероятности и выяснив ее главные свойства, перейдем к рассмотрению одного из важнейших понятий теории вероятностей – понятия случайной переменной. Допустим, что в результ

Дискретные случайные переменные
Случайная переменная дискретна, если совокупность возможных ее значений конечна, или, по крайней мере, поддается счислению. Предположим, что случайная переменная X может принимать значения x1

Непрерывные случайные переменные
В противоположность дискретным случайным переменным, рассмотренным в предыдущем подразделе, совокупность возможных значений непрерывной случайной переменной не только не конечна, но и не поддается

Математическое ожидание и дисперсия
Часто возникает необходимость охарактеризовать распределение случайной переменной с помощью одного–двух числовых показателей, выражающих наиболее существенные свойства этого распределения. К таким

Моменты
Большое значение в математической статистике имеют так называемые моменты распределения случайной переменной. В математическом ожидании большие значения случайной величины учитываются недостаточно.

Биномиальное распределение и измерение вероятностей
В этой теме рассмотрим основные типы распределения дискретных случайных переменных. Предположим, что вероятность наступления некоторого случайного события А при единичном испытании равно

Прямоугольное (равномерное) распределение
Прямоугольное (равномерное) распределение — простейший тип непрерывных распределений. Если случайная переменная X может принимать любое действительное значение в интервале (а, b), где а и b – дейст

Нормальное распределение
Нормальное распределение играет основную роль в математической статистике. Это ни в малейшей степени не является случайным: в объективной действительности весьма часто встречаются различные признак

Логарифмически нормальное распределение
Случайная переменная Y имеет логарифмически нормальное распределение с параметрами μ и σ, если случайная переменная X = lnY имеет нормальное распределение с теми же параметрами μ и &

Средние величины
Из всех групповых свойств наибольшее теоретическое и практическое значение имеет средний уровень, измеряемый средней величиной признака. Средняя величина признака – понятие очень глубокое,

Общие свойства средних величин
Для правильного использования средних величин необходимо знать свойства этих показателей: срединное расположение, абстрактность и единство суммарного действия. По своему численному значени

Средняя арифметическая
Средняя арифметическая, обладая общими свойствами средних величин, имеет свои особенности, которые можно выразить следующими формулами:

Средний ранг (непараметрическая средняя)
Средний ранг определяется для таких признаков, для которых еще не найдены способы количественного измерения. По степени проявления таких признаков объекты могут быть ранжированы, т. е. расположены

Взвешенная средняя арифметическая
Обычно, чтобы рассчитать среднюю арифметическую, складывают все значения признака и полученную сумму делят на число вариантов. В этом случае каждое значение, входя в сумму, увеличивает ее на полную

Средняя квадратическая
Средняя квадратическая вычисляется по формуле: , (6.5) Она равна корню квадратному из суммы

Медиана
Медианой называют такое значение признака, которое разделяет всю группу на две равные части: одна часть имеет значения признака меньшее, чем медиана, а другая – большее. Например, если име

Средняя геометрическая
Чтобы получить среднюю геометрическую для группы с n данными, нужно все варианты перемножить и из полученного произведения извлечь корень n-й степени:

Средняя гармоническая
Средняя гармоническая рассчитывается по формуле . (6.14) Для пяти вариантов: 1, 4, 5, 5 сре

Число степеней свободы
Число степеней свободы равно числу элементов свободного разнообразия в группе. Оно равно числу всех имеющихся элементов изучения без числа ограничений разнообразия. Например, для исследова

Коэффициент вариации
Стандартное отклонение – величина именованная, выраженная в тех же единицах измерения, как и средняя арифметическая. Поэтому для сравнения разных признаков, выраженных в разных единицах из

Лимиты и размах
Для быстрой и примерной оценки степени разнообразия часто применяются простейшие показатели: lim = {min ¸ max} – лимиты, т. е. наименьшее и наибольшее значения признака, p =

Нормированное отклонение
Обычно степень развития признака определяется путем его измерения и выражается определенным именованным числом: 3 кг веса, 15 см длины, 20 зацепок на крыле у пчел, 4% жира в молоке, 15 кг настрига

Средняя и сигма суммарной группы
Иногда бывает необходимо определить среднюю и сигму для суммарного распределения, составленного из нескольких распределений. При этом известны не сами распределения, а только их средние и сигмы.

Скошенность (асимметрия) и крутизна (эксцесс) кривой распределения
Для больших выборок (n > 100) вычисляют еще два статистических показателя. Скошенность кривой называется асимметрией:

Вариационный ряд
По мере увеличения численности изучаемых групп все более и более проявляется та закономерность в разнообразии, которая в малочисленных группах была скрыта случайной формой своего проявления.

Гистограмма и вариационная кривая
Гистограмма – это вариационный ряд, представленный в виде диаграммы, в которой различная величина частот изображается различной высотой столбиков. Гистограмма распределения данных представлена на р

Достоверность различия распределений
Статистическая гипотеза – это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных. Проверка статистической гипотезы – это процесс принятия

Критерий по асимметрии и эксцессу
Некоторые признаки растений, животных и микроорганизмов при объединении объектов в группы дают распределения, значительно отличающиеся от нормального. В тех случаях, когда какие-нибудь при

Генеральная совокупность и выборка
Весь массив особей определенной категории называется генеральной совокупностью. Объем генеральной совокупности определяется задачами исследования. Если изучается какой-нибудь вид диких жив

Репрезентативность
Непосредственное изучение группы отобранных объектов дает, прежде всего, первичный материал и характеристику самой выборки. Все выборочные данные и сводные показатели имеют значение в каче

Ошибки репрезентативности и другие ошибки исследований
Оценка генеральных параметров по выборочным показателям имеет свои особенности. Часть никогда не может полностью охарактеризовать все целое, поэтому характеристика генеральной совокупности

Доверительные границы
Определять величину ошибок репрезентативности необходимо для того, чтобы выборочные показатели использовать еще и для нахождения возможных значений генеральных параметров. Этот процесс называется о

Общий порядок оценки
Три величины, необходимые для оценки генерального параметра, – выборочный показатель (), критерий надежности

Оценка средней арифметической
Оценка средней величины имеет целью установить величину генеральной средней для изученной категории объектов. Требуемая для этой цели ошибка репрезентативности определяется по формуле:

Оценка средней разности
В некоторых исследованиях в качестве первичных данных берется разность двух измерений. Это может быть в случае, когда каждая особь выборки изучается в двух состояниях – или в разном возрасте, или п

Недостоверная и достоверная оценка средней разности
Такие результаты выборочных исследований, по которым нельзя получить никакой определенной оценки генерального параметра (или он больше нуля, или меньше, или равен нулю), называются недостоверными.

Оценка разности генеральных средних
В биологических исследованиях особое значение имеет разность двух величин. По разности ведется сравнение разных популяций, рас, пород, сортов, линий, семейств, опытных и контрольных групп (метод гр

Критерий достоверности разности
При том большом значении, которое имеет для исследователей получение достоверных разностей, появляется необходимость овладеть методами, позволяющими определить – достоверна ли полученная, реально с

Репрезентативность при изучении качественных признаков
Качественные признаки обычно не могут иметь градаций проявления: они или имеются, или не имеются у каждой из особей, например пол, комолость, наличие или отсутствие каких-нибудь особенностей, уродс

Достоверность разности долей
Достоверность разности выборочных долей определяется так же, как и для разности средних: (10.34)

Ошибка коэффициента корреляции
Как и всякая выборочная величина, коэффициент корреляции имеет свою ошибку репрезентативности, вычисляемую для больших выборок по формуле:

Достоверность выборочного коэффициента корреляции
Критерий выборочного коэффициента корреляции определяется по формуле: (11.9) где:

Доверительные границы коэффициента корреляции
Доверительные границы генерального значения коэффициента корреляции находятся общим способом по формуле:

Достоверность разности двух коэффициентов корреляции
Достоверность разности коэффициентов корреляции определяется так же, как и достоверность разности средних, по обычной формуле

Уравнение прямолинейной регрессии
Прямолинейная корреляция отличается тем, что при этой форме связи каждому из одинаковых изменений первого признака соответствует вполне определенное и тоже одинаковое в среднем изменение другого пр

Ошибки элементов уравнения прямолинейной регрессии
В уравнении простой прямолинейной регрессии: у = а + bх возникают три ошибки репрезентативности. 1 Ошибка коэффициента регрессии:

Частный коэффициент корреляции
Частный коэффициент корреляции – это показатель, измеряющий степень сопряженности двух признаков при постоянном значении третьего. Математическая статистика позволяет установить корреляцию

Множественный коэффициент корреляции
Множественный коэффициент корреляции трех переменных – это показатель тесноты линейной связи между одним из признаков (буква индекса перед тире) и совокупностью двух других признаков (буквы индекса

Линейное уравнение множественной регрессии
Математическое уравнение для прямолинейной зависимости между тремя переменными называется множественным линейным уравнением плоскости регрессии. Оно имеет следующий общий вид:

Корреляционное отношение
Если связь между изучаемыми явлениями существенно отклоняется от линейной, что легко установить по графику, то коэффициент корреляции непригоден в качестве меры связи. Он может указать на отсутстви

Свойства корреляционного отношения
Корреляционное отношение измеряет степень корреляции при любой ее форме. Кроме того, корреляционное отношение обладает рядом других свойств, представляющих большой интерес в статистическом

Ошибка репрезентативности корреляционного отношения
Еще не разработано точной формулы ошибки репрезентативности корреляционного отношения. Обычно приводимая в учебниках формула имеет недостатки, которыми не всегда можно пренебречь. Эта формула не уч

Критерий линейности корреляции
Для определения степени приближения криволинейной зависимости к прямолинейной используется критерий F, вычисляемый по формуле:

Дисперсионный комплекс
Дисперсионный комплекс – это совокупность градаций с привлеченными для исследования данными и средними из данных по каждой градации (частные средние) и по всему комплексу (общая средняя).

Статистические влияния
Статистическое влияние – это отражение в разнообразии результативного признака того разнообразия фактора (его градаций), которое организовано в исследовании. Для оценки влияния фактора нео

Факториальное влияние
Факториальное влияние – это простое или комбинированное статистическое влияние изучаемых факторов. В однофакторных комплексах изучается простое влияние одного фактора при определенных орга

Однофакторный дисперсионный комплекс
Дисперсионный анализ разработан и введен в практику сельскохозяйственных и биологических исследований английским ученым Р. А. Фишером, который открыл закон распределения отношения средних квадратов

Многофакторный дисперсионный комплекс
Ясное представление о математической модели дисперсионного анализа облегчает понимание необходимых вычислительных операций, особенно при обработке данных многофакторных опытов, в которых больше ист

Преобразования
Правильное использование дисперсионного анализа для обработки экспериментального материала предполагает однородность дисперсий по вариантам (выборкам), нормальное или близкое к нему распределение в

Показатели силы влияний
Определение силы влияний по их результатам требуется в биологии, сельском хозяйстве, медицине для выбора наиболее эффективных средств воздействия, для дозировки физических и химических агентов – ст

Ошибка репрезентативности основного показателя силы влияния
Точная формула ошибки основного показателя силы влияния еще не найдена. В однофакторных комплексах, когда ошибка репрезентативности определяется только для одного показателя факториального

Предельные значения показателей силы влияния
Основной показатель силы влияния равен доле одного слагаемого от всей суммы слагаемых. Кроме того, этот показатель равен квадрату корреляционного отношения. По этим двум причинам показатель силы вл

Достоверность влияний
Основной показатель силы влияния, полученный в выборочном исследовании, характеризует, прежде всего, ту степень влияния, которая реально, в действительности, проявилась в группе исследованных объек

Дискриминантный анализ
Дискриминантный анализ является одним из методов многомерного статистического анализа. Цель дискриминантного анализа состоит в том, чтобы на основе измерения различных характеристик (признаков, пар

Постановка задачи, методы решения, ограничения
Предположим, имеется n объектов с m характеристиками. В результате измерений каждый объект характеризуется вектором x1 ... xm, m >1. Задача состоит в том, что

Предположения и ограничения
Дискриминантный анализ «работает» при выполнении ряда предположений. Предположение о том, что наблюдаемые величины – измеряемые характеристики объекта – имеют нормальное распределение. Это

Алгоритм дискриминантного анализа
Решение задач дискриминации (дискриминантный анализ) состоит в разбиении всего выборочного пространства (множества реализации всех рассматриваемых многомерных случайных величин) на некоторое число

Кластерный анализ
Кластерный анализ объединяет различные процедуры, используемые для проведения классификации. В результате применения этих процедур исходная совокупность объектов разделяется на кластеры или группы

Методы кластерного анализа
В практике обычно реализуются агломеративные методы кластеризации. Обычно перед началом классификации данные стандартизуются (вычитается среднее и производится деление на корень квадратный

Алгоритм кластерного анализа
Кластерный анализ – это совокупность методов классификации многомерных наблюдений или объектов, основанных на определении понятия расстояния между объектами с последующим выделением из них групп, &

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги