рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ОСНОВИ ЕКОЛОГІЇ

ОСНОВИ ЕКОЛОГІЇ - Конспект, раздел Философия, Міністерство Освіти І Науки України ...

Міністерство освіти і науки України

Національний університет «Львівська політехніка»

Л.В. Жук

ОСНОВИ ЕКОЛОГІЇ

 

КОНСПЕКТ ЛЕКЦІЙ

для студентів базових напрямів

6.060101 «Будівництво», 6.170203 «Пожежна безпека»

 

 

 

Затверджено на засіданні кафедри екології та охорони навколишнього середовища Протокол №19 від 19.03.2009 р.

 

Львів-2009


 

Жук Л.В. Основи екології: Конспект лекцій для студентів базових напрямів 6.060101 «Будівництво», 6.170203 «Пожежна безпека». – Львів: Видавництво Національного університету «Львівська політехніка», 2009. – 96с.

 

 

Укладач Жук Л.В., к.т.н.  
Відповідальний за випуск Мальований М.С., д.т.н., проф.
Рецензенти Мартиняк О.В., к.т.н., доц. Березюк Д.О., к.т.н., доц.

 


ЗМІСТ

 

   
Лекція 1. Основні екологічні проблеми сучасності
Лекція 2. Біосфера. Екосистеми
Лекція 3. Екологічні фактори
Лекція 4. Забруднення довкілля відходами виробництва
Лекція 5. Методи боротьби зі забрудненнями атмосфери
Лекція 6. Очищення виробничих стічних вод
Лекція 7. Утилізація твердих відходів виробництва і споживання  

 

 


Лекція 1. Основні екологічні проблеми сучасності

Визначення, завдання, значення і структура екології.

Основні етапи розвитку екології. Українська екологічна школа.

Основні екологічні проблеми сучасності.

Джерела екологічної кризи сучасності та її вплив на біосферу.

Характеристика сучасної екологічної ситуації в Україні.

Концепція сталого розвитку.

 

Визначення, завдання, значення і структура екології. Екологія – це наука, що вивчає взаємодію організмів та їх угруповань із середовищем існування. Екологія охоплює широке коло теоретичних та практичних питань:

· вивчення різних рівнів біологічної організації (від окремих організмів через популяції та види до екосистем та біосфери в цілому), серед яких основним є рівень екосистем (рис.1.1);

· принципи і закономірності їхньої структури, функціонування та розвитку;

· дослідження суті процесів обміну і перетворення речовини та енергії;

· застосування екологічних знань у справі охорони навколишнього середовища та раціонального використання природних ресурсів.

Рис.1.1. Рівні організації матерії

 

Термін «екологія» запропонував німецький біолог Ернст Геккель у 1866 році.

Екологія – відносно молода наука, ще не так давно нею цікавилося лише невелике коло фахівців. Однак протягом останніх десятиліть вона почала швидко розвиватись. Цьому сприяла необхідність вирішення таких важливих проблем сучасності, як раціональне використання природних ресурсів, профілактика забруднення середовища промисловими відходами та транспортом, запобігання знищенню природних угруповань, збереження генофонду рослинного і тваринного світу. Екологія дає уявлення про те, яким чином досягти симбіозу техніки, виробництва і природи.

Внаслідок появи нових практичних потреб ускладнюється структура екології, з’являються нові підрозділи. Зараз існує кілька класифікацій основних складових частин екології. Одні автори приділяють більше уваги загально-філософським і культурним аспектам, другі – соціальним, треті – еколого-економічним, четверті – біоекологічній деталізації.

Сучасна екологія, по суті, складається з чотирьох взаємопов’язаних розділів, які поділяють екологію за розмірами об’єктів вивчення:

· аутекологія (екологія організмів) вивчає взаємовідносини окремого організму (особини) або груп особин з навколишнім середовищем. Цей розділ екології займається, головним чином, визначенням меж стійкості виду і його ставленням до різних екологічних факторів. Аутекологія вивчає також вплив середовища на морфологію, фізіологію та поведінку організмів;

· демекологія (екологія популяцій чи видів) вивчає взаємини популяцій чи видів із довкіллям з врахуванням внутрішньопопуляційних та внутрішньовидових процесів. Демекологія пов'язана з вирішенням таких проблем, як механізми регуляції чисельності організмів, оптимальна густота. Цей розділ екології ще називають популяційною екологією;

· синекологія (або біоценологія) вивчає взаємини спільнот живих організмів (на рівні ценозів, екосистем) з довкіллям та їх структурно-функціональну організацію; це вчення про співтовариство рослин, тварин і мікроорганізмів, їхньої взаємодії одного з одним і з середовищем проживання.

· біосферологія, або екологія біосфери (вчення про біосферу) з’ясовує закономірності еволюції біосфери. Це вчення про глобальну екосистему Землі, область системної взаємодії живої та неживої природи.

Існують й інші класифікації розділів екології. Наприклад, за Г.Білявським та В.Бровдієм (1995 р.) екологія складається з таких основних блоків: біоекологія; геоекологія; техноекологія; соціоекологія (рис.1.2).

Основні етапи розвитку екології. Українська екологічна школа. Перший етап (до 1866 р.) – стародавній. Не буде перебільшенням стверджувати, що екологія «існувала завжди». Первісна людина померла б з

Рис. 1.2. Структура сучасної екології

 

голоду без необхідних їй знань про поведінку й особливості дичини, якби не мала отриманого від предків і набутого самостійно досвіду «взаємовідносин з довкіллям». У наукових працях учених минулого (Теофаста, Арістотеля та ін.) є чимало фактів про вплив кліматичних змін на рослини і тварини, про особливості живих істот, ознаки пристосування до умов середовища проживання тощо. Це період «наївної екології», коли окремі її елементи з’являлися в працях ботаніків, зоологів – період накопичення екологічних фактів.

Екологія дуже довго розвивалася як частина біології, загального вчення про світ живого.

Другий етап (до 30-х років XX ст.) – аутекологічний. Це період виявлення закономірностей у стосунках тварин і рослин з різноманітними абіотичними факторами, внутрішніх екологічних досліджень та визначення «екосистем».

Екологія цього часу базувалася на працях Ч. Дарвіна, О. Гумбольдта, Е. Геккеля, і полягала у дослідженні впливу фізичних (температура, освітлення тощо) та хімічних (склад води та ін.) чинників довкілля на життєдіяльність окремої особини чи цілого виду.

Третій етап (1930 – 1970 рр.) – синекологічний. На цьому етапі досліджувались великі групи організмів (популяцій та їх об'єднань) з точки зору взаємодії окремих особин і популяцій різних видів істот між собою. Великою заслугою цього етапу екології є залучення такого могутнього інструменту як вища математика (насамперед диференціальних рівнянь). Вперше екологи застосували теоретичне моделювання розвитку подій у живому довкіллі.

Саме тоді запроваджено поняття «екосистема», «біогеоценоз», сформульовано основні екологічні закони.

До найвизначніших екологів цього періоду належать такі зарубіжні вчені, як Г.Бердон-Сандерсон, У.Елтон, А.Тенслі С.Форбс, В.Шелфорд та вітчизняні Д.Кашкаров, А.Парамонов, В.Вернадський, С.Сєверцев, В.Сукачов.

Четвертий етап (1970 р. – дотепер) – мегаекологічний, або період глобальної екології. Доміну­ючими стали уявлення про «пов'язаність усього з усім», необхідність одночасного і якнайточнішого врахування взаємодії між собою та з довкіллям усіх видів і варіан­тів живого.

Одночасно виникли і стали стрімко розвиватися десятки галузей, розділів і підрозділів сучасної екології.

Перші спроби екологічного підходу до природоохоронної справи в Україні відомі ще з часів Ярослава Мудрого. В його "Руській правді" – правничому кодексі Київської Русі (початок XI ст.) – вже існувала чітка система правової оцінки використання ресурсів і передбачалася кара за збитки, нанесені довкіллю. За шкоду, заподіяну диким звірам і птахам, каралося так строго, як і за негідні вчинки щодо людини.

В часи Гетьманщини (ХVІ-ХVІІІ ст.) ці природоохоронні традиції зберігалися і поширювалися. Як і в княжі часи, регламентуються охо­рона лісів і байраків, полювання, рибальство, бджільництво та садівництво.

У зібранні Малоросійських прав (1807 р.) сказано: "Хто соколине гніздо пошкодить, підрубає чи навмисно його скине, чи з собою молодих соколів забере ... повинен заплатити ...".

Вагомим внеском в розвиток української екологічної школи стали дослідження українських чорноземів В.В.Докучаєвим (1846-1903); результати цих досліджень викладено в книзі вченого «Руський чорнозем». Створений і очолюваний ним Ново-Александріївський інститут сільського господар­ства та лісівництва (нині Кіровоградська обл.) став осередком інтенсивного розвитку ґрунтознавства.

Перший науковий центр екологічних досліджень в Україні створено у 1930 році. Це був сектор екології в Інституті зоології та ботаніки Харківського державного університету. Дослідження в галузі екології, виконані в цьому центрі В.В.Станчинським (1930-1940 р.р..), були піонерськими і оригінальними. Його праця «До розуміння біоценозу» (1933 р.) є класичною в області вивчення зв'язків між організмами в ценотичних системах.

Відкриття нашого земляка В. І. Вернадського, який був першим президентом Академії наук України, посідають особливе місце в історії екології. Він доказав наявність широкомасштабного впливу живих організмів на абіотичне середовище, запропонував вчення про біосферу як про оболонку Землі, що визначається присутністю живої речовини. В.І.Вернадський вперше запровадив у вивчення біосфери кількісний підхід, що дозволило об'єктивно оцінити масштаби біогеохімічного кругообігу речовин. Вчення В.І.Вернадського про ноосферу додатково узагальнило численні дані про нерозривність зв'язку людини з природним середовищем.

У повоєнний період увага українських екологів спрямовувалась на вивчення техногенних і урбогенних впливів на природні екосистеми (Ількун, Тарабрін, Кондратюк, Кучерявий).

Екологи України зробили вагомий внесок у розробку методів оцінки рівня радіоактивного забруднення великих територій та обґрунтування заходів зниження екологічних збитків від наслідків аварії на Чорнобильській АЕС.

Основні екологічні проблеми сучасності. Наукові досягнення ХХ століття створили ілюзію про майже повну керованість світом, однак господарська діяльність людського суспільства, екстенсивне використання природних ресурсів, величезні масштаби відходів - все це входить у протиріччя з можливостями планети (її ресурсним потенціалом, запасами прісних вод, здатністю біосфери до самоочищення).

Діяльність людської цивілізації дедалі більше охоплює біотичні й абіотичні ланки довкілля, поступово змінюючи його під свої потреби. (Цей вплив людини на довкілля названо техногенезом, а ті частини біосфери, атмосфери, гідросфери і літосфери, які перебувають під техногенним впливом людської цивілізації, — «техносферою»). Техногенне освоєння значної частини планети Земля, поряд із задоволенням потреб людської цивілізації (освоєння нових ресурсів, створення нових комунікацій, джерел енергії, засобів швидкого пересування і комфортного стилю життя тощо), дедалі більше деформує, пригнічує, руйнує і винищує її біоту, забруднює атмосферу і гідросферу, призводить до деградації ґрунтів, порушує природну цілісність та геохімічну природність земної кори.

Антропогенна діяльність загрожує природі у планетарному масштабі. Згідно зі спеціальною доповіддю «Становище в світі», що публікується щорічно Інститутом спостережень за світом (Worldwatch Institute, USA), основними глобальними екологічними проблемами вважають проблеми енергоресурсів, харчування, знеліснення територій, скорочення біорізноманіття, забруднення атмосфери, коливання клімату, руйнування озонового шару, великої кількості відходів, пандемії СНІДУ.

Енергоресурси. Упродовж ХХ століття споживання енергії та сировини збільшилося більше ніж у 10 разів. За цей час з надр Землі було видобуто корисних копалин більше, ніж за всю попередню історію людства. І потреби в них у найближчі десятиліття збільшаться удвічі, хоча прогноз добування і виробництва енергоносіїв не дає підстав сподіватися на їхню реалізацію.

Харчування. Забруднення і зростаючий дефіцит прісної води може стати однією з перешкод збільшення виробництва сільськогосподарської продукції. Прісна вода становить лише 2% всіх водних ресурсів Землі і її кількість дорівнює 3×1016 тонн (з них 86% в сніжно-льодових утвореннях, 13% - в підземних водах і тільки 1% - в озерах, річках та ґрунті). На кожного жителя Землі припадає близько 9 тис. м3 води (мова йде про доступну питну воду з річок і озер). Сьогоднішні запаси прісної води на душу населення удвічі менші, ніж були 50 років тому, і в майбутньому вони далі зменшуватимуться.

Для забезпечення населення світу чистою питною водою і каналізацією, які відповідають санітарним нормам, необхідно, за підрахунками вчених, понад 36 млрд. доларів на рік – а це приблизно 4% світових воєнних витрат.

Ще однією складовою проблеми харчування є використання генетично модифікованих організмів (ГМО) – живих організмів, які містять штучно вбудований ген. Приміром, сою збагачують геном петунії (це робить її стійкою до комах), картоплю - геном ґрунтової бактерії (через це її стебла і листя самі виробляють пестициди, смертельні для колорадського жука), отримано також помідори, які можуть зберігатися кілька місяців при температурі +12°С, рис, збагачений каротином і т.д.

ГМО об’єднують три групи організмів – генетично модифіковані мікроорганізми (ГММ), тварини (ГМТ) та рослини (ГМР). З якою метою створено ГМО? Для того, щоб змінити певні агрономічні та фізіологічні характеристики рослин (забезпечити стійкість до окремих гербіцидів, до шкідників та хвороб, до засолення, дії високих та низьких температур); змінити якість кінцевої продукції (колір, склад, тривалість зберігання, термін дозрівання); вирішити питання очищення довкілля від органічних забруднень та від важких металів; забезпечити синтез певних сполук у рослинному організмі (у тому числі й фармпрепаратів) і використати рослину як фабрику для виробництва визначених сполук.

Аргументи висуваються дійсно вагомі – генетично модифіковані продукти врятують людство від голоду, бо трансгени вирощувати значно дешевше і вони дають великі врожаї. Такі продукти начебто корисніші за натуральні – в них штучно підвищують кількість вітамінів та мікроелементів, а на деякі покладено функцію ліків. Так, американські вчені, працюють над виведенням породи ГМ-курей, яйця яких міститимуть речовини, що запобігають онкозахворюванням. Однак вплив ГМО на людський організм до кінця не вивчений. Науковці багатьох країн світу виступають проти поширення цих технологій. Численні дослідження цієї проблеми свідчать, що генетично модифіковані продукти є серйозною небезпекою – і не лише для здоров’я людини, а й для навколишнього середовища. Їхній вплив передбачити неможливо – він детермінований у часі. Але вже зараз доведено, що трансгени, потрапляючи у наш організм, зумовлюють пухлини, алергії, порушення репродуктивної функції.

Станом на сьогодні трансформовано близько 140 видів різних рослин. Водночас комерціалізовано (отримано дозвіл на вирощування у відкритих системах з промисловою метою, на використання як харчових продуктів або як корму для тварин) відносно малу їх кількість. Реально ж на комерційному ринку в останні роки присутні лише генетично модифіковані лінії сої, кукурудзи, ріпаку, бавовнику, люцерни, папайї та гарбуза. Світовим лідером у вирощуванні ГМР є США, Аргентина, Бразилія, Канада і Китай. Площі, що були відведені під різні ГМ культури у 2006 р., становили в цих країнах від 49, 8 млн. га у США до 3,3 млн. га в Китаї.

Скорочення біорізноманіття. Погіршення природного середовища існування призводить до зникнення багатьох живих організмів, що загрожує порушенням екологічного балансу в природі на різних рівнях.

Забруднення атмосфери. Концентрація в атмосфері вуглекислого газу знаходиться на найвищому рівні за останні 160 тис. років і продовжує збільшуватися. Це може призвести до екстремальних природних умов на всій планеті. Фахівці вважають, що близько 80-86% забруднювачів повітря сконцентровано над розвиненими промисловими районами, 10-15% - над містами, 1-2% - над сільською місцевістю, 0,1% - над центральними районами Світового океану. У великих містах за добу осідає ~1,5 тонн пилу на кожен квадратний кілометр, а вже за 100 км від нього - приблизно у 100 разів менше.

Коливання клімату. У 1992 році в Ріо-де-Жанейро Рамкову Конвенцію з питань зміни клімату підписали 160 країн. Прийняття цієї Конвенції є безумовним визнанням того факту, що зміна клімату є глобальною проблемою. Збитки, викликані зміною кліматичних умов та глобальним потеплінням, тільки у 1998 р. становили майже 70 млрд. доларів. Кіотський протокол до Рамкової Конвенції ООН про зміну клімату, схвалений у 1999 р., став значним кроком вперед у спробах вирішити цю проблему. Країни, що увійшли до Додатку 1 Протоколу (розвинуті країни та країни з перехідною економікою) домовились зменшити викиди парникових газів до рівня, меншого на 5% від рівня базового року, у період з 2008 до 2012 року. Для різних країн встановлено різний рівень зниження викидів. Україні необхідно обмежити ріст викидів парникових газів до рівня 1990 року. Зменшення викидів стосується усіх секторів економіки, у т.ч. промисловості, енергетики та транспорту.

Знеліснення територій та спалювання лісів для створення додаткових сільськогосподарських угідь сприяють збільшенню емісії парникових газів.

Руйнування озонового шару. Озон є захисним бар’єром, який зменшує згубну дію жорстких ультрафіолетових променів. Зменшення вмісту озону в атмосфері загрожує захворюваннями людей і тварин, збільшенням кількості шкідливих мутацій, а також зниженням урожаїв сільськогосподарських культур.

Проблема відходів. Збитки від них - це не лише величезні площі землі, зайняті звалищами, териконами, шлакосховищами та ін., а й великі дози токсикантів та радіоактивних забрудників у повітрі, воді та ґрунті.

Пандемія СНІДУ. У нинішньому столітті людство може зіткнутися з безпосередньою загрозою існуванню цілих популяцій. У деяких африканських країнах ВІЛ-інфіковані становлять до 20–25% населення.

Джерела екологічної кризи сучасності та її вплив на біосферу. Першоджерелом і першопричиною бурхливого розвитку глобальної екологічної кризи є, як вважають експерти, демографічний вибух, що, незважаючи на колосальні екологічні резерви біосфери, супроводжується скороченням природних ресурсів, нагромадженням величезної кількості відходів, забрудненням довкілля, хворобами, голодом, вимиранням.

До недавнього часу розвиток людського суспільства і самоочищення навколишнього природного середовища від техногенних забруднень пе­ребували в динамічній екологічній рівновазі. Проте останніми роками інтенсивне зростання населення планети та зменшення термінів, необхідних для збільшення населення планети на 1 мільярд, поряд з іншими чинниками, призвели до різних негативних наслідків, з якими біосфера впоратися не здатна. Так, згідно з підрахунками фахівців, для збільшення населення нашої планети на перший мільярд знадобилося близько 1млн. років, тоді як для другого – всього 75 років (1925 р.). Протягом ХХ століття населення планети збільшилось у 4 рази, і зараз становить понад 6 млрд. чол. (табл.1.1).

 

Таблиця 1.1

Чисельність населення світу (ХVІ-ХХІ ст.)

 

Рік Населення, млн. чол. Рік Населення, млн. чол.
    (за прогнозами)

 

Вирубування лісів, ерозія ґрунтів, катастрофічне забруднення біосфери невпинно супроводжуватимуться вимиранням та зникненням багатьох видів рослин і тварин. А інакше бути не може, оскільки згідно з законом константності біосфери В.Вернадського, кількість живої речовини в біосфері є постійною величиною і при збільшенні чисельності одного виду (тобто, в даному випадку – людей) зменшуватиметься чисельність інших видів).

Природа переживає вплив суспільства за такими напрямами:

· використання компонентів навколишнього середовища як ресурсної бази виробництва;

· вплив виробничої діяльності людей на навколишнє середовище;

· демографічний тиск на природу (збільшення кількості населення, урбанізація, сільськогосподарське використання земель).

Основними джерелами антропогенного забруднення середовища є:

· виробники енергії (ТЕС, АЕС, ГРЕС, сотні тисяч котельних);

· гірничо-видобувні та помислові об`єкти (в першу чергу металургійні, хімічні, нафтопереробні, цементні і целюлозо-паперові);

· екстенсивне, перехімізоване сільське господарство;

· військова промисловість і військові об`єкти;

· автомобільний та інші види транспорту (морський, річковий, залізничний, повітряний).

Вони забруднюють довкілля токсичними речовинами, шкідливими фізичними полями, шумами, вібраціями, надмірним теплом. З розвитком хімії, металургії, енергетики і машинобудування світові почали загрожувати відходи, що містять важкі метали, нітрати, радіонукліди, нафтопродукти, пестициди, синтетичні пральні порошки та інші шкідливі речовини, що не засвоюються мікроорганізмами, не розкладаються, а накопичуються у ґрунтах, водоймах та підземних водах.

Характеристика сучасної екологічної ситуації в Україні. За природними умовами Україна є однією з найбагатших країн світу. Загальна площа України становить 603 628 км², що становить 5,7 % території Європи і 0,44 % території світу. Близько 95% її території – рівнинна частина, а решта 5%. – це гірські системи Карпат та Криму. Ліси займають 19% її території.

За різноманітністю і багатством мінерально-сировинної бази Україна може забезпечити збалансований розвиток базових галузей промисловості і агропромислового комплексу. Україна виробляє близько 5% світового обсягу мінеральної сировини. На її території розвідано близько 8 тис. родовищ майже 90 видів корисних копалин. Потребують промислового освоєння такі види мінеральної сировини, як золото, рідкісні метали (літій, скандій та ін.), алуніти, флюорити, апатити, фосфорити, цеоліти. Багато родовищ залягають у вигідних географічних і еколого-економічних умовах, що підвищує їхню цінність.

Недосконалі технології видобування та переробки мінеральної сировини, незадовільне вирішення питання комплексного освоєння родовищ призводить до того, що в надрах залишається і втрачається: розвіданих запасів нафти – 70%, солей – 50%, вугілля – 40%, металів – 25%. Відходи видобутку і переробки корисних копалин майже не використовуються у народному господарстві і займають при цьому десятки тисяч гектарів сільськогосподарських угідь, ускладнюючи екологічну ситуацію.

Україна з її багаторічною енергетично-сировинною спеціалізацією та низьким технологічним рівнем промисловості належить до числа країн з найвищими абсолютними обсягами утворення та накопичення відходів. Щороку в поверхневих сховищах складується понад 1,5 млрд. т твердих відходів. У різних звалищах, шламосховищах, відвалах і териконах нагромаджено понад 20 млрд. т відходів, які займають близько 130 тис. га земель. Значна кількість відходів (до 90 %) утворюється на підприємствах гірничовидобувної промисловості під час розробки родовищ та збагачення корисних копалин. На сьогодні утилізують лише третину загальної кількості відходів. При цьому частка вторинної сировини в загальному спо­живанні ресурсів не перевищує 15 %.

Така картина є також результатом того, що фінансування природоохоронних заходів здійснювалось за залишковим принципом. Внаслідок цього її економіка перенасичена хімічними, металургійними та гірничорудними виробництвами із застарілими технологіями і значним руйнівним впливом на навколишнє середовище.

Деформована галузева структура виробництва спричинила деформовану його територіальну організацію. Виникли гігантські центри надмірного зосередження промисловості, що характеризуються високим антропогенним впливом на природне середовище. Це насамперед Донбас і Придніпров'я – найбільш забруднені регіони в Європі. В цьому регіоні, а він займає 18% території з 28% населення України, виробляється 40% загального обсягу промислової продукції.

У складному стані перебувають земельні ресурси та ґрунти України. Її земельний фонд (60,4 млн. га) характеризується високим рівнем освоєння. Розораність території становить 56% і є найвищою у світі. Для порівняння, у США цей показник становить 27%, у Франції – 42%, у ФРН – 33%. В середньому на одного жителя України припадає 0,81 га сільськогосподарських угідь і 0,65 га ріллі. Тільки 8% території країни перебуває в природному стані. Це болота, озера та гірські масиви, покриті і непокриті лісом. В Україні всі придатні для інтенсивного землекористування території вже задіяні у різних сферах господарської діяльності.

Одночасно мають місце значні втрати угідь і відведення земель для несільськогосподарських потреб. Упродовж останніх десяти років для державних і громадських потреб відведено понад 360 тис. га земель, в тому числі майже 120 тис. га сільськогосподарських угідь.

Внаслідок екстенсивного розвитку сільського і лісового господарства, водних і хімічних меліорацій відбувається інтенсивний розвиток ерозійних процесів, ущільнення орного шару ґрунту, зниження його родючості, ослаблення стійкості природних ландшафтів України. Стан ґрунтів у цілому досяг критичного і перебуває на грані виснаження. Це зумовлено тривалим екстенсивним використанням земельних угідь, і особливо ріллі, що не компенсувалося рівнозначними заходами з відтворення родючості ґрунтів.

Внаслідок нераціонального застосування засобів хімізації сільського господарства в ґрунтах накопичуються залишки мінеральних добрив і пестицидів. Щороку використовується понад 4 млн. т мінеральних добрив, що в перерахунку на душу населення становить майже 85 кг.

Велике занепокоєння викликає стан водних ресурсів та способи їхнього використання. Поверхневі води України належать здебільшого до дуже забруднених. Найбільш забруднені ріки – Дніпро, Сіверський Донець і ріки Приазов'я. Чорне море, відоме своїми рибними багатствами, за останні тридцять років перетворилося на стічну яму для Європи. До основних забруднювальних речовин належать нафтопродукти, феноли, сполуки фосфору, азоту, ртуті, важких металів тощо. Безкиснева зона, яка у 70-х роках минулого століття займала площу 3,5 тис. км2, нині розширилась до 50 тис. км2, що становить понад 10 % усієї акваторії Чорного моря. З 26 видів риб, які виловлювали рибалки в 60-ті роки, залишилось лише 5.

Основними причинами, що зумовили сучасний кризовий стан довкілля в Україні, є:

· застарілі технології виробництва з високою енерго- та матеріаломісткістю, що перевищують у два-три рази відповідні показники в розвинених країнах;

· високий рівень концентрації промислових об'єктів у деяких регіонах;

· відсутність ефективних природоохоронних технологій (зворотних систем водозабезпечення, очисних споруд тощо), незадовільний рівень експлуатації існуючих природоохоронних споруд;

· відсутність ефективного правового й економічного механізмів, які сприяли б використанню екологічно безпечних технологічних процесів.

Концепція сталого розвитку. Основним завданням людства на нинішньому етапі є створення економіки, яка не завдає шкоди навколишньому середовищу. У ХХІ столітті мають бути вироблені нові етичні норми, в основу яких покладено екологічні цінності. Основною стратегією поведінки людини в біосфері повинна стати екологічна культура, принципи якої – повага до всього живого, повага до природи, тобто до біосфери та її складових.

У 1992 р. міжнародна конференція країн-членів ООН в Ріо-де-Жанейро рекомендувала, як основу для розвитку світової спіль­ноти, концепцію сталого розвитку.Основою сталого розвитку є узгоджений розвиток біосфери і людської цивілізації, паритетність відносин у тріаді «людина – господарство – природа».

Сталий розвиток повинен забезпечити збалансоване розв’язання проблем соціально-економічного характеру (теперішнього часу і майбутніх поколінь людей) та збереження навколишнього середовища і природно-ресурсного потенціалу, формування умов для відновлення біосфери та її локальних екосистем, орієнтацію на зниження рівня антропогенного впливу на природне середовище і гармонізацію розвитку людини в природі.

 

 

Лекція 2.Біосфера. Екосистеми.

Поняття біосфери та її основних складових. Літосфера. Атмосфера. Гідросфера.

Природні ресурси.

Форми та механізми деградації біосфери.

Поняття біосфери та її основних складових. Літосфера. Атмосфера. Гідросфера.Біосфера (від грец. βίος – життя, sjaίra - куля) – область існування живої речовини (за В.І.Вернадським). Біосфера є сукупністю усіх біогеоценозів Землі, єдиною глобальною екологічною системою.

Вперше термін «біосфера» вжив австрійський вчений Е. Зюсс у 1875 р., але поширився цей термін завдяки академіку В.І.Вернадському (1864-1945). Основи його вчення викладено у праці «Біосфера» (1926). За мільярди років існування Землі живі істоти змінили склад її атмосфери, гідросфери і літосфери, створивши, по суті, зовсім нове середовище життя.

В.І.Вернадський визначив біосферу як термодинамічну оболонку з температурами +50…-50оС і тиском приблизно 760 мм.рт.ст, що відповідає межам життя для більшості організмів. За В.І.Вернадським, верхня межа біосфери знаходиться на висоті до 22 км, охоплюючи тропосферу і нижню частину стратосфери. Знизу біосфера обмежена відкладеннями на дні океанів (до 0,5 км нижче дна океану) до глибини ~11 км і глибиною проникнення в надра Землі організмів і води в рідкому стані (до 5 км) (рис.2.1).

Основними складовими біосфери, за Вернадським, є жива речовина, біогенна, біокосна і косна речовини. Крім того, до складу біосфери входять радіоактивні речовини, які виникають в результаті розпаду радіоактивних елементів.

Однією з найважливіших особливостей біосфери є різноманіття живих організмів, яке є результатом тривалої еволюції. Величезна кількість живих істот (понад 2 млн. видів) знаходяться в надзвичайно складних взаємовідносинах між собою і неживою речовиною. Стійкість біосфери, за Вернадським, полягає у сталості її загальної маси (1019 т), маси живої речовини (1015 т), енергії, пов’язаної з живою речовиною (1018 ккал) і середнього складу всього живого. В.І. Вернадському належить і відкриття такого основного закону біосфери: «Кількість живої речовини є планетною константою з часів архейської ери, тобто за весь геологічний час»).

Біосфера в усі періоди свого еволюційного розвитку постійно змінювалась під впливом різних природних процесів. Наслідком тривалої еволюції стала її здатність до саморегуляції та нейтралізації різних негативних процесів.

Якісно новий етап розвитку біосфери розпочався у сучасну епоху: діяльність людини за своїми масштабами прирівнюється до геологічних процесів. Саме сьогодні настав час, коли розум у найбільш високому розумінні повинен визначати ставлення до навколишнього природного середовища. У 1944 р. В.І. Вернадський сформулював поняття ноосфери, тобто сфери розуму. Ноосфера – це біосфера, перетворена людством відповідно до пізнаних і практично освоєних законів її будови і розвитку.

Біосфера є уявною обо­лонкою земної кулі, до якої належать частини літосфери, атмосфери і гідросфери, заселені живими організмами (рис.2.1).

Літосфера (від грец. lίqoς - камінь; sjaίra - куля) – зовнішня тверда оболонка земної кулі, до якої належать земна кора завтовшки від 6 км (під океанами) до 80 км (гірські системи) і верхній шар мантії. Товщина і будова літосфери також визначаються типом земної кори; товщина літосфери в районі материків становить 150–250 км, під океанами 50–100 км.

Живі організми можуть жити в літосфері на глибині до 5 км.

До складу літосфери входять два найголовніші компоненти – ґрунт і надра Землі. Ґрунт – тонкий верхній шар континентальної земної кори, один із найголовніших ресурсів планети, гігантська екологічна система, яка разом із Світовим океаном вирішально впливає на всю біосферу. Він утворений під впливом рослин, тварин, мікроорганізмів та клімату з материнських гірських порід, на яких він знаходиться.

У ґрунті взаємодіють такі основні компоненти:

· мінеральні речовини (пісок, глина), вода, повітря;

· детрит – відмерла органічна речовина, залишки життєдіяльності рослин і тварин;

· велика кількість живих організмів, які розкладають детрит до гумусу (перегною).

· 3,5-6%.

 

 

Рис. 2.1. Склад біосфери та її межі

 

Загальний земельний фонд України становить 60,36 млн.га. Територія України розташована в трьох ґрунтово-кліматичних зонах (степова, лісова і полісся) з різними типами ґрунтів (чорноземи, сірі лісові ґрунти, дернисті та торф’яники відповідно). Одним з найбільших природних багатств України є чорноземи. Вони становлять майже 50% світового банку чорноземів. Розорані землі в Україні займають близько 85% від площі степів і лісостепів. Посівні площі становлять 33,5 млн.га.

Середня товщина шару родючого ґрунту в Україні становить 15-20 см (максимальна його товщина може сягати до 2 м).

Надра – частина природного середовища, яка знаходиться під земною поверхнею. Надра є мінеральною основою біосфери; для людини надра – традиційний об’єкт для добування корисних копалин: паливних (вугілля, нафта, горючі сланці), рудних (залізо, алюміній, мідь, олово та ін.) і нерудних (фосфорити, апатити та ін.), природних будівельних матеріалів (вапняки, піски, гравій та ін.).

Атмосфера (від грец. άtmός- пара й sjaίra - куля)– це газова оболонка Землі. За своїми фізичними властивостями вона є неоднорідною як за висотою, так і по горизонталі, хоча горизонтальна неоднорідність проявляється значно слабше. Середній тиск атмосфери на поверхню Землі на рівні моря дорівнює 760 мм рт. ст. Щільність і тиск атмосфери зменшуються з висотою: біля поверхні Землі середня щільність повітря дорівнює 1,22 кг/м3, на висоті 10 км – 0,41 кг/м3, а на висоті 100 км – 8,8 х 10-7 кг/м3.

Маса атмосфери нашої планети становить 5,3 · 1015 т, тобто дорівнює лише одній мільйонній маси Землі (маса Землі дорівнює 5,974 ∙ 10 21 т). Проте її роль у природних процесах біосфери є надзвичайно великою; вона визначає загальний тепловий режим поверхні нашої планети, захищає її від шкідливих космічного та ультрафіолетового випромінювань.

До складу атмосфери належать азот (~78%), кисень (~21%), аргон (~0,93%) і вуглекислий газ (~0,03%). Не більше 0,04% становлять разом водень, неон, гелій, метан, криптон та інші гази. Приблизно до 200 км основним компонентом повітря є азот. На висоті понад 600 км основним компонентом є гелій, а понад 2 000 км – водень, що утворює навколо Землі так звану водневу корону.

Кожний газ виконує свою функцію. Кисень забезпечує дихання і горін­ня. Азот входить до складу білків – речовин, з яких складаються всі живі організми. Вуглекислий газ — один з основних компонентів процесу фотосинтезу рослин. Озон – газ, що поглинає основну частину шкідливого ультрафіолетового випромінювання Сонця.

Якби атмосфери не існувало, середня температура поверхні Землі складала б –23°С, фактично ж вона дорівнює 14,8°С.

Згідно з номенклатурою, прийнятою Комісією з аерології Всесвітньої метеорологічної організації у 1961 році, земна атмосфера за характером температурної стратифікації (розподіленням температури за висотою) поділяється на 5 основних шарів: тропосфера, стратосфера, мезосфера, термосфера і екзосфера і 4 перехідні шари: тропопауза, стратопауза, мезопауза і термопауза (табл.2.1).

Тропосфера(від грец. τρόπος – поворот й sjaίra - куля)– нижня область земної атмосфери між земною поверхнею і тропопаузою, що характеризується пониженням температури повітря з висотою в середньому на 6,5°С/км. В полярних і середніх широтах висота тропосфери сягає 8 – 12 км, а у тропіках – 16 – 18 км. У тропосфері зосереджена основна маса атмосферного повітря – від 75 % у середніх і полярних широтах до 90% - у тропіках.

Тропопауза (товщина 1 – 2 км) – перехідний шар між тропосферою та стратосферою, що є основою інверсійного або ізотермічного розподілу температури в стратосфері.

 

Таблиця 2.1

Характеристика основних шарів атмосфери

 

Шар Висота над поверхнею Землі Н, км Температура t, 0С Градієнт Δt, 0С /км
Нижня межа Верхня межа нижня верхня
тропосфера поверхня Землі ~ 12 ─ 13 -56 -6,5
тропопауза ~12 ─ 13 ~ 14 -56 -56 0,0
стратосфера   ~ 14 ~ 20 ~ 20 -56 -56 -44 -56 -44 -2,5 0,0 +1,0 +2,8
стратопауза -2,5 -2,5 0,0
мезосфера -2,5 -58 -58 -86 -2,8 -2,0
мезопауза -86 -86 0,0
термосфера ~ 450 -86 ~ +1200 »0
термопауза не визначена      
екзосфера ~ 450 ~20 000      

Стратосфера (від лат. stratum – шар і сфера ) – шар атмосфери на висоті від 8-16 до 55 км, в якому температура переважно зростає з висотою або залишається сталою. Зростання температури з висотою у середній і верхній частинах стратосфери зумовлено поглинанням ультрафіолетової сонячної радіації озоном. (атмосферний озон переважно міститься у стратосфері, тому цей шар називають ще озоносферою).

Озоновий шар є найважливішою складовою частиною атмосфери, що впливає на клімат і захищає все живе на Землі від випромінювання Сонця. Основна маса озону перебуває на висотах від 10 до 50 км, а його максимум – на висоті 18-26 км. Усього в стратосфері втримується 3,3 трильйони тон озону. Озон перебуває в дуже розрідженому стані; якщо б гіпотетично всю кількість озону зібрати безпосередньо навколо Землі, то товщина цього шару склала б усього 2,5–3 мм.

Мезосфера(від грец.μέσος – середній, серединний і сфера)– шар атмосфери на висоті від 55 до 80 км, характеризується зниженням температури з висотою, яке відбувається внаслідок охолодження цього шару інфрачервоним випромінюванням озону й вуглекислого газу.

Термосфера (від грец. θέρμη – жар і сфера) – шар атмосфери, який розміщується на висоті понад 95 км і сягає до 450 км, у якому температура збільшується з висотою. Нижньою частиною термосфери є іоносфера ( від 95 до 500 км). Вміст іонів у багато разів більший, ніж у верхніх шарах термосфери (незважаючи на сильне розрідження повітря), і на висоті приблизно 100 - 400 км становить ~ 10 15 – 10 6 на 1 см3. Іонізація газів в іоносфері відбувається завдяки дії ультрафіолетового випромінювання Сонця, і спричиняє їх світіння та виникнення полярного сяйва.

Від ступеню іонізації повітря залежить його електропровідність. В іоносфері електропровідність повітря у 1012 разів більша, ніж біля земної поверхні.

В іоносфері відбувається поглинання, заломлення і відбивання радіохвилі; хвилі довжиною λ=20м взагалі не проникають крізь іоносферу, а відбиваються шарами з невеликою концентрацією іонів у нижній її частині – на висоті 70 – 80 км. Середні і короткі хвилі відбиваються верхніми іоносферними шарами. Саме внаслідок відбивання радіохвиль у іоносфері можливий дальній радіозв’язок на коротких хвилях.

Екзосфера (від грец. έξω – зовні, і сфера)– зовнішня оболонка земної атмосфери, починається з висоти близько 1000 км, переходить у міжпланетний простір. Густина повітря в екзосфері є настільки малою, що молекули і атоми можуть вільно викидатись у міжпланетне середовище.

Криву розподілення температури в атмосфері за висотою (криву стратифікації) будують на основі вимірювань за допомогою радіозонду, літака або ракети. Зміна температури в межах атмосфери на різних висотах пояснюється неоднаковим поглинанням сонячної енергії газами.

Гідросфера ( від грец. ϋδωρ – вода й sjaίra - куля) – це водна оболонка Землі, до якої належать:

- Світовий океан;

- води суходолу (ріки, озера, болота, льодовики)

- ґрунтові та підземні води;

- волога атмосфери.

Гідросфера тісно пов’язана з іншими геосферами Землі – атмосферою і літосферою. Вода на Землі знаходиться в безперервному русі. Кругообіг води об’єднує усі геосфери, утворюючи в цілому замкнену систему: океан – атмосфера – суходіл.

Загальний обсяг води на планеті оцінюється 1 386 млн. км3, з них 97,5% зосереджено в океанах (рис.). Решта 2,5% становлять крижані шапки полюсів, ґрунтові та підземні води, прісноводні водойми й річки, а ще вода, яка міститься у атмосфері (0,001% від загального об’єму). Найбільший об’єм неокеанічної води зосереджено у крижаних шапках полюсів та льодовиках (86%), а 14% зосереджено в поверхневих та підземних водах. Лише 1% прісної води – це озера, річки, ґрунтові води.

Вода є найпоширенішою неорганічною сполукою на планеті, основою усіх процесів. Живі організми містять до 80-90% води; втрата ними 10-20% води призводить до їхньої загибелі. Для нормального здійснення функцій організму необхідно близько 2 л води на добу.

Вода гідросфери містить майже всі хімічні елементи. Середній хімічний склад її близький до складу океанічної води, у якій переважають хлориди. У водах суходолу переважають карбонати. Вміст мінеральних речовин (солей) у воді – солоність – коливається залежно від клімату і місцевих умов та вимірюється у тисячних частинах грама - проміле (°/оо).

 

 
 

 

 


Рис. 2.2. Класифікація природних ресурсів

Середня солоність Світового океану близько 35 °/оо, тобто в кожному кілограмі води міститься в середньому 35 г солей. Звичайно води суходолу слабко мінералізовані – прісні (солоність рік і прісних озер від 0,5 до 1 °/оо. Відомі водойми, вміст солей у яких є майже таким, як у дистильованій воді (це, зокрема, сфагнові болота; солоність становить не більше 0,01 °/оо). Середня солоність океанічної води близько 35 °/оо, солоність морської води коливається від 1-2 °/оо (Фінська затока Балтійського моря) до 41,5 °/оо (Червоне море). Найбільша концентрація солей природних водойм – у солоних озерах (Мертве море до 260 °/оо) і Тамбуканському озері на Кавказі (347 °/оо). Дві крайні величини солоності – 0,010 °/оо та 347 °/оо визначають діапазон солоності природних водойм, у межах якого можливе життя.

Природні ресурси це найважливіші компоненти навколишнього при­родного середовища, які використовують для задоволення матеріальних і культурних потреб людини. Вони поділяються на невичерпні і вичерпні (рис.2.2). Біосфера землі є замкненою системою з відносно сталою масою і обмінюється з космічним простором лише енергією. Тому людству необхідно враховувати її здатність до само відтворення своєї біопродуктивності та вичерпність запасів невідновних ресурсів. Потрібно економно і раціонально використовувати природні ресурси, свідомо відмовляючись від надлишків. Подальший розвиток життя на Землі залежить від наявності природних ресурсів, простору для життя і об’єктів для задоволення культурних та інших потреб.

Форми та механізми деградації біосфери. Антропогенне забруднення атмосфери.Існує два головних джерела забруднення атмосфери: природне і антропогенне. Природне джерело – це вулкани, пилові бурі, лісові пожежі, процеси розкладання рослин і тварин.

До основних антропогенних джерел забруднення атмосфери належать підприємства паливно-енергетичного комплексу, промислові підприємства і транспорт.

Сучасний розвиток людського суспільства характеризується надзвичайно інтенсивним зростанням чисельності населення, а, отже, й зростанням енергетичних потреб. Упродовж XX ст. з надр Землі видобуто корисних копалин більше, ніж за всю попередню історію людства. Внаслідок їхнього використання відбувається викидання в атмосферу великої кількості шкідливих газів (сірчаний ангідрид, оксид сірки, оксиди азоту, вуглеводні, сажа, яка є носієм смолистих речовин, пил і зола, які містять солі важких металів) в атмосферу. Результатом цього є парниковий ефект та глобальне потепління, випадання кислотних опадів, утворення озонових дір, виникнення смогів.

Парниковий ефект. Температура на Землі підтримується завдяки балансу між нагріванням Землі сонячним промінням та охолодженням після повернення енергії в космос. Підтримання енергетичного балансу відбувається завдяки так званим парниковим газам. Ці гази функціонують так, як скло в теплицях: дають можливість інфрачервоним променям потрапляти всередину і затримують їх, забезпечуючи стабільну температуру (рис.2.3).

Існує 6 основних парникових газів:

· вуглекислий газ CO2. Його внесок у парниковий ефект становить понад 50%. Збільшення концентрації CO2відбувається внаслідок знищення лісів (щороку в світі знищується від 16 до 20 млн. га лісів. Наявна на сьогодні фітомаса планети здатна поглинути лише 60% від загальної кількості парникових газів) і спалювання нафти, газу, вугілля (щороку в світі спалюється ~3,2 млрд. т нафти і нафтопродуктів);

· водяна пара Н2О. Потепління, що відбувається через дію інших парникових газів, збільшує випаровування та зумовлює підвищення кількості водяної пари в атмосфері;

· метан СН4. Найбільшими джерелами викидів метану є рисові поля, домашня худоба, анаеробна ферментація сміття, добування вугiлля та транспортування природного газу. Метан є також супутнiм продуктом розкладання бiомаси та неповного згорання палива;

· закис азоту N2O. Антропогенними джерелами емiсiї N2O є сiльськогосподарська обробка ґрунтів, особливо використання азотовмiсних добрив; спалювання викопного природного палива; виробництво адiпiнової (нейлонової) та азотної кислот; спалювання бiомаси.

· озон;

· хлорфторвуглеці. На відміну від решти парникових газів вони синтезовані людиною.

Парниковий ефект взагалі є природним явищем. Він позитивно впливає на всі екосистеми та стабілізує температуру атмосферного повітря. Однак, збільшуючи викиди парникових газів в атмосферу, людина порушує баланс, що склався впродовж тривалого часу. Наслідком парникового ефекту є глобальне потепління клімату.

Підвищення середньої температури Землі на 1,5°С (а це можливо, за науковими прогнозами, у 2025 році), викличе підняття рівня Світового океану на 25 см. Підвищення на 0,7–0,8°С у природі раніше відбувалося упродовж тисячі років, а останнім часом – упродовж 100 років!

Загроза глобального потепління спонукала політиків прийняти міжнародні угоди (Рамкова конвенція ООН про зміну клімату 1992 р. і Кіотський протокол 1999 р.) про зниження темпів приросту викидів цього газу в атмосферу. Саме – темпів приросту! Ніхто не сподівається, що вдасться зменшити самі викиди. Якщо розвинені країни останніми роками почали зменшувати викиди парникових газів, то в країнах, що розвиваються (насамперед – Китай і Індія), відзначається протилежна тенденція. Викиди вуглецю в цих країнах в кінці XX століття на 70% перевищили рівень 1986 р. Ймовірно, що це призведе до зростання викидів в атмосферу вуглецю до 2010 р. на 40% порівняно з рівнем 1990 р. А це означає, що середня температура повітря на Землі до кінця XXI століття може зрости на 2–4,5°С.

 

 

Рис. 2.3. Схема парникового ефекту

 

Чому після цієї позначки вже немає шляху назад, чому клімат не зможе повернутися у звичний для нас стан? Річ у тому, що після перетинання температурою критичної межі 2°С спрацюють фізичні механізми, дія яких (уже без втручання людини) призведе до різкого посилення парникового ефекту, тобто розпочнуться необоротні зміни стану атмосфери Землі та пов’язані з цим кліматичні катаклізми.

Із фізики відомо, що розчинність газів у воді зменшується з підвищенням її температури – у діапазоні 10–20°С розчинність СО2 зменшується на 3% на кожен градус підвищення температури води. У Світовому океані міститься величезна маса вуглекислого газу – близько 140 трлн. тонн (в 60 разів більше, ніж в атмосфері). Таким чином, при підвищенні температури води океану в атмосферу може виділитися величезна додаткова кількість СО2, що в багато разів перевищуватиме ту, яка викидається за рахунок діяльності людини. Це різко посилить парниковий ефект, отож температура атмосфери підвищиться ще більше. І далі цього процесу вже не зупинити – за підвищенням температури повітря знову йтиме підвищення температури Світового океану, і знову в атмосферу буде викинуто величезну кількість вуглекислого газу – «маховик» процесу не зупинити!

При глобальному потеплінні в атмосфері збільшуватиметься і вміст водяної пари, що також посилить парниковий ефект.

За рахунок цього процесу відбуватиметься танення льодовиків, і на величезних територіях утворяться болота, одним із продуктів життєдіяльності яких є метан. Тобто з’являється ще один механізм розігрівання атмосфери.

Таким чином, варто людині перетнути межу – як далі розпочинається ланцюгова реакція і кліматичну систему вже не вдасться повернути в попередній стан. Підраховано: з середини XVIII століття середня температура повітря при поверхні землі вже підвищилася більш ніж на 1,2 градуса за Цельсієм , отже, до фатальної межі нам залишилося зовсім мало!

Руйнування озонового шару. Життя на Землі залежить від енергії Сонця. Надходить ця енергія на Землю у вигляді світла видимого частини спектру випромінювання, а також інфрачервоного (або теплового) та ультрафіолетового (УФ) випромінювань.

УФ-випромінювання є найбільш фізіологічно активним, тобто інтенсивно діє на живу речовину. Весь потік УФ-випромінювання Сонця, що надходить до земної атмосфери, умовно поділяють на три діапазони: УФ(А) (довжина хвилі 400–315 нм), УФ(В) (315–280 нм) і УФ(С) (280–100 нм). УФ(В)- і УФ(С)-випромінювання, так званий «жорсткий ультрафіолет», є надзвичайно шкідливими для всього живого: вони призводять до порушення структури білків та нуклеїнових кислот і врешті-решт до загибелі клітин.
Що ж захищає біосферу від згубної дії «жорсткого ультрафіолету»?

На висотах 10-50 км над земною поверхнею міститься озон. Він утворюється в стратосфері за рахунок двохатомного кисню (О2), що поглинає «жорстке» УФ-випромінювання: енергія УФ(В)- та УФ(С)-випромінювань затрачається на фотохімічну реакцію утворення озону з кисню (ЗО2 3), і тому до поверхні Землі вони не доходять; туди проникає лише суттєво послаблений потік «м'якого» УФ(А)-випромінювання. Від його негативної дії наш організм захищається, синтезуючи в шкірі шар темного пігменту меланіну (загар). Однак ця речовина утворюється досить повільно. Тому тривале перебування на сонці, коли шкіра ще не насичена меланіном, викликає її почервоніння, головний біль, підвищення температури тіла тощо.

Озоновий шар в атмосфері Землі з'явився на початку її геологічної історії, коли в повітря став надходити кисень, що вироблявся в процесі фотосинтезу мікроскопічними морськими водоростями. За розрахунками вчених, коли вміст кисню в атмосфері досяг приблизно 10 % від сучасного, сформувався озоновий шар, і життя змогло вийти з моря на суходіл (до цього поверхня суходолу була випалена, стерилізована ультрафіолетом).

Серед основних причин послаблення озонового щита, викликаного антропогенною діяльністю – запуск космічних ракет (під час запуску системи «Спейс-Шатл» викидається 346 т водяної пари, 187 т хлору і його сполук, 7 т азотних оксидів) та рух літаків, які викидають велику кількість оксидів азоту; надмірне і неконтрольоване внесення мінеральних (азотних) добрив, які є джерелом утворення оксидів азоту. Потужним джерелом руйнування озонового шару є хлорфторвуглеці (ХФВ), або фреони.

Фреони вже понад 60 років використовуються як холодоагенти в холодильних установках і кондиціонерах, як пропеленти (гази, що виштовхують продукти харчування або косметичні засоби з упаковки) в аерозольних сумішах, піноутворювальні речовини у вогнегасниках, при виготовленні полістиролового одноразового посуду, а також як розчинники. Раніше фреони вважались ідеальними для практичного застосування, оскільки є стабільними і неактивними, а отже, нетоксичними. Але саме інертність цих сполук робить їх небезпечними для атмосферного озону. ХФВ не розпадаються у тропосфері, а проникають (разом з потоками повітря) у стратосферу.

 

 

Потрапивши на висоту ~25 км, де концентрація озону максимальна, ХФВ піддаються інтенсивному впливу ультрафіолетового випромінювання (рис. 2.4), що не проникає на менші висоти через екрануючу дію озону. Ультрафіолет руйнує стійкі у звичайних умовах молекули фреонів, які розпадаються на компоненти з високою реакційною здатністю, зокрема, атомарний хлор. При руйнуванні озону хлор діє як каталізатор: під час хімічної реакції його кількість не зменшується. Внаслідок цього один атом хлору може зруйнувати до 100 000 молекул озону перш ніж буде дезактивований або повернеться в тропосферу. Зараз викид фреонів в атмосферу обчислюється кількома мільйонами тонн, але навіть у гіпотетичному випадку повного припинення виробництва й використання ХФВ негайного результату досягти не вдасться: дія фреонів, які вже потрапили в атмосферу, буде тривати кілька десятиліть. Вважається, що час життя в атмосфері для двох найбільш широко використовуваних ХФВ: фреону-11 (CFCl3) і фреону-12 (CF2Cl2) становить 75 і 100 років відповідно.

Природним джерелом надходження хлору в атмосферу є вулканічні викиди.

Проблема охорони озонового шару регулюється Віденською конвенцією про охорону озонового шару (1985 р.) та Монреальським протоколом про охорону атмосферного озону (1987 р.), підписаним 56 країнами. Вони передбачають гнучкі заходи зі скорочення викидів озоноруйнувальних речовин: скорочення та припинення виробництва ХФВ, економічні заходи, обмін технологіями та фінансову допомогу.

Кислотні дощі.Оксиди сірки і азоту, що викидаються в атмосферу внаслідок роботи теплових електростанцій (ТЕС) та автомобільних двигунів, сполучаються з атмосферною вологою й утворюють дрібні крапельки сірчаної та азотної кислот, які переносяться вітрами у вигляді кислотного туману й випадають на землю кислотними дощами. Кислотними називають взагалі будь-які опади — дощ, сніг, туман, якщо значення їх рН становить менш ніж 7,0. Кислотні дощі мають значення рН частіше в межах 4,1-2,1, а в деяких випадках навіть менше ніж 2,1. Ще 100 років тому значення рН дощової води дорівнювало 7, тобто опади були нейтральними.

Кислотні опади вкрай шкідливо впливають на довкілля:

- знижується врожайність сільськогосподарських культур через ушкодження листя кислотами;

- з ґрунту вимиваються кальцій, калій і магній, що призводить до його деградації;

- гинуть ліси (найчутливішими до кислотних дощів є кедр, бук і тис);

- отруюється вода озер і ставків, гине риба, зникають комахи;
щезають водоплавні птахи і тварини, що живляться комахами;

- загибель лісів спричинює зсуви ґрунту в гірських районах;

- прискорюється руйнування пам'яток архітектури, споруд, особливо тих, що побудовані з вапняку, та оздоблених мармуром;

- збільшується захворюваність людей (хвороби очей та органів дихання).

Кислотний сніг завдає ще більшої шкоди, ніж дощ, оскільки він може накопичуватись упродовж тривалого часу, що призво­дить до значного закиснення ґрунту під час танення снігу навесні. Кислот­ність талої води в може буди десятки разів вища від кислотності води дощової.

Смоги.Окремо взяті речовини, що забруднюють повітря, є менш небезпечними, ніж їхні суміші.Хімічні реакції, що відбуваються безпосередньо в повітрі, спричиняють виникнення димних туманів – смогів (від англ. smoke – дим і fog – туман). Смоги виникають за певних умов: по-перше, при великій кількості пилу і газів у повітрі; по-друге, при тривалому існуванні антициклональних умов погоди, за яких забруднювачі накопичуються в приземному шарі атмосфери. Назва «смог» стала відомою після грудня 1952 року, коли в Лондоні утворився туман, який зумовив велику кількість смертельних випадків. У холодній повітряній масі міста сформувалася інверсія; промислові дими, що продовжували надходити в атмосферу, змішалися з насиченим вологою повітрям і утворили над містом густу хмару з високим вмістом оксидів сірки. Такий стан в атмосфері спостерігався більше двох тижнів, протягом яких зафі­ксовано майже 4000 смертельних випадків. Наприкінці 1962 року в Рурі (ФРН) смог убив за три дні 156 осіб. Смоги, що виникають у зимову пору року, одержали назву лондонських.

Відомі ще так звані лос-анджелеські,або фотохімічні смоги,які виникають у літній період. За умови інтенсивного впливу сонячної радіації у насиченому вихлопними газами автомобілів повітрі проходять складні реакції з утворенням нових високотоксичних забруднювачів – фотооксидантів (озон, органічні перекиси, нітрити та ін.), що подразнюють слизові оболонки шлунково-кишкового тракту, легенів та органів зору. Тільки в Токіо смог викликав отруєння 10 тис. осіб у 1970 році та 28 тис. у 1971 р.

Антропогенне забруднення літосфери.У процесі еволюції людина почала змінювати поверхню землі; особливо великих обсягів ці зміни досягли за останні шістдесят років. Після 1950 р. в усьому світі почався швидкий процес урбанізації, який зумовив збільшення чисельності міського населення. У цей час інтенсивно розвивалася господарська інфраструктура, що супроводжувалося серйозними змінами поверхні літосфери – будувалися залізничні та автомобільні шляхи, прокладалися нафтопроводи, лінії електропередач та зв’язку.

90% великих водосховищ світу побудовані також після 1950 р. Крім водосховищ побудовано канали великої протяжності, мережі дрібних каналів, а також дренажні системи. У мережах зрошувальних і дренажних каналів відбуваються активні ерозійні процеси.

Поверхня літосфери порушується і під час гірських розробок та створення кар’єрів, а також під час геологорозвідувальних робіт, які супроводжуються копанням шурфів, бурінням свердловин, проведенням вибухових робіт при проведенні геологічної розвідки. Це зумовлює, як правило, активізацію небезпечних стихійних природних явищ: завалів, просідання ґрунту, створення умов для формування снігових лавин, сприяння збільшенню поверхневого стоку.

На сучасному етапі розвитку відбувається великомасштабне втручання людини в систему водо-, нафто- і газоносних горизонтів літосфери, які розташовані на різних глибинах. При цьому вплив на літосферу здійснюється кількома шляхами.

Частина поверхневого стоку переводиться у підземний при:

· зрошуванні. Під час зрошування в магістральних каналах і безпосередньо на полях даремно витрачається до 30% води. У результаті на більшій частині зрошувальної території відбувається піднімання рівня ґрунтових вод і навіть виникають заболочені території;

· підтопленні земель у районі водосховищ. Таке піднімання рівня ґрунтових вод і заповнення ненасиченої зони зумовлюють зміни механічних властивостей ґрунту, сприяють руйнуванню берегів водосховищ, розвитку суфозії – вимивання з ґрунту мінеральних частинок, просідання верхніх шарів ґрунту та утворення порожнин;

· переведення частини поверхневого стоку в підземний вини­кає в усіх населених пунктах в результаті роботи водогінної та каналізацій­ної систем. При цьому виникають руйну­вання фундаментів, осідання ґрунтів, розвивається суфозія;

· закачування за­бруднених відпрацьованих вод у глибокі свердловини та закачу­вання гарячої води і пари в нафтові свердловини з метою збільшення нафтовіддачі пласту. Обсяги негативних наслідків таких закачувань величезні.

Потужним засобом впливу на літосферу є відкачу­вання води з різних горизонтів підземних вод для водопостачання.

Вторгненням у літосферу є добування на­фти і газу. За період розвитку нафтогазових родовищ пробурено тисячі таких свердловин глибиною до 2 км, і на їхньому місці виникли великі депресійні урвища; розкрито і розгерметизо­вано глибокозалеглі водо-, нафто- і газоносні горизонти.

Крім розвідувальних і промислових свердловин досить гли­бокі горизонти надр пронизують шахти з видобування корисних копалин: вугілля, поліметалічних руд, солей. Утворені підземні пустоти весь час зростають за об'ємами і площами і зумовлюють про­сідання ґрунту. На більшості підприємств із видобутку вугілля, на жаль, не практикується заповню­вати вироблений підземний простір.

Райони видобутку нафти, газу та вугілля є джерелами виділення в атмосферу метану, який є одним із чинників утворення парникового ефекту.

У нормальних природних умовах усі процеси, які відбува­ються в ґрунті, знаходяться у рівновазі. Основним фактором порушення рівноваги стану ґрунту є антропогенний. У резуль­таті розвитку господарської діяльності людини відбувається еро­зія, дефляція (вітрова ерозія), заболочування, засолення і забруднення ґрунтів.

Зараз на кожного жителя нашої планети припадає менше, ніж 1 га орної землі. Ці незначні площі продовжують скорочуватись через невмілу господарську діяльність людини. Так, в Україні за останні 25 років вміст гумусу в ґрунті зменшив­ся з 3,5 до 3,2%, площі кислих ґрунтів збільшилися на 1,8 млн. га (25%), а площі засолених - на 0,6 млн. га (24%). Через неправильну меліорацію майже 50 тис. га орних земель підтоплені.

Великі площі родючих земель у світі гинуть при гірничо­промислових роботах, при будівництві підприємств і міст. Зни­щення лісів і природного трав’яного покриву, багаторазове розорювання землі без дотримання правил агротехніки призводить до виник­нення ерозії ґрунту - руйнування і зміни родючого шару водою і вітром. Водна ерозія полягає у змиванні верхнього шару ґрунту або розмиванні його в глибину під впливом талих, дощових і поливних (іригаційних) вод. Вітрова ерозія, або дефляція (розвіювання і видування ґрунту) завдає руйнації у посушливих степових, напівпустельних і пустельних районах з піщаними і супіщаними ґрунтами.

Одним із наслідків промислової діяльності людини є інтен­сивне забруднення ґрунтового покриву. Основними забруд­нювачами ґрунту є метали та їх сполуки, радіоактивні елементи, а також добрива і пестициди, які використовуються у сільському господарстві.

До небезпечних хімічних забруднювачів ґрунтів належить ртуть та її сполуки. Ртуть потрапляє в навколишнє середовище з отрутохімікатами, відходами промислових підприємств, які містять металеву ртуть та її сполуки.

Ще більш масовий і небезпечний характер має забруднення ґрунту свинцем. Відомо, що при виплавлянні однієї тонни свин­цю в навколишнє середовище з відходами викидається до 25 кг цього металу. Сполуки свинцю використовуються як добавки до бензину (тетраетилсвинець), тому автотранспорт є серйозним джерелом свинцевого забруднення ґрунтів. Особливо багато свинцю в ґрунтах вздовж великих автомагістралей. Ґрунт стає «мертвим» при вмісті в ньому 2-3 г свинцю на 1 кг ґрунту (навколо деяких підприємств вміст свинцю досягає 10-15 г/кг).

Радіоактивні елементи можуть потрапляти в ґрунт і накопи­чуватись у ньому в результаті випадання опадів від ядерних ви­бухів або при скиданні в навколишнє середовище рідких та твердих відходів АЕС та промислових підприємств, діяльність яких пов'язана з використанням атомної енергії.

На родючість ґрунтів негативно впливає надмірне використання хімічних речовин, що використовуються для боротьби зі шкідниками, бур'янами і хво­робами рослин. Серйозними проблемами навколишнього середовища також є:

- спустелювання (аридизація) земель – деградація ґрунту в посушливих районах, викликана згубним впливом людської діяльності і антропогенними змінами клімату. Основними причинами спустелювання є виснаження і надмірне забруднення ґрунтів, їх нераціональне використання та вирубування лісів;

- засолення ґрунтів. Воно виникає в результаті нагромадження у верхніх шарах ґрунту надлишку шкідливих для живих орагізмів легкорозчинних солей (карбонату натрію, хлоридів і сульфатів) за рахунок ґрунтових і поверхневих вод, а найчастіше внаслідок нераціонального зрошування. У результаті утворюються солонці і солончаки.

- створення звалищ промислових і побутових відходів.

Антропогенне забруднення гідросфери.Людство щорічно витрачає понад 3000 кмЗ води і потреба у її використанні щороку зростає. Глобальною екологічною проблемою сучасності стає забруднення і виснаження водних ресурсів. Вода після її використання скидається у водойми і річки, і майже третина її – без належного очищення. Велика частина води в результаті водоспоживання безповоротно втрачається. Щорічно безповоротне водопостачання становить близько 150 кмЗ, тобто 1 % стоку прісних вод.

Гідросфера зазнає найбільшого антропогенного впливу внаслідок:

- скидання забрудне­них відпрацьованих промислових і комунальних стічних вод. Щороку в річки скидається до 450 млрд. м3 стічних вод; вони містять різноманітні органічні речовини і сполуки важких металів. Більше половини великих річок у світі страж­дають від надмірного забруднення або пересихають. З 500 най­більших річок тільки дві є більш-менш «здоровими» - це Ама­зонка в Південній Америці і Конго в Африці. Це пов'язано з тим, що на берегах обох річок розташовано мало промислових підприємств;

- поверхневого стоку з територій сільсько­господарських об'єктів і угідь.

Розкладання великої кількості органічних речовин у водой­мах, що надійшли зі стічними водами, викликає дефіцит кисню і накопичення сірководню, розмноження синьо-зелених водоростей («цвітіння» води), що у свою чергу ви­кликає масове знищення водних організмів, особливо промислових видів риби. Присутність великої кількості органічних речовин ство­рює у мулах відновне середовище, внаслідок чого виникає особливий тип мулових вод, що містять сірководень, аміак, іони металів. Забруд­нення води органічними речовинами називається евтрофікацією.

Небезпечним є теnлове забруднення води. Воно зумовлене викиданням у відкриті водойми підігрітих вод від АЕС, ТЕС та інших енергетичних установок. Тепла вода змінює термічний і біологічний режим водойм і негативно впливає на гідробіонтів. Побічним фактором теплового забруднення води є підсилення ток­сичної дії більшості шкідливих домішок.

Країни, які мають вихід до моря, часто здійснюють тут захоронення матеріалів і речовин (дамnінг); їх обсяг становить близько 10% від усієї маси забруднювальних речовин, що надхо­дять у Світовий океан.

Радіоактивне забруднення Світового океану зумовлюють джерела іонізаційного вип­ромінювання, затоплені атомні підводні човни і радіонукліди, які потрапили в океан в результаті підводних ядерних вибухів, захоронення радіоактивних відходів.

Значну частку в забруднення води вносять детергентu (ми­ючі засоби). До їх складу входять як активна основа поверхнево­активні речовини (ПАР) і різні добавки: лужні і нейтральні елек­троліти, пероксидні сполуки, а також речовини, що сповільнюють або перешкоджають сорбції забруднювачів. Детергенти, потрапляючи у водні об'єкти, викли­кають спінювання, погіршують органолептичні властивості води, порушують процеси кисневого обміну, токсично впливають на фауну, утруднюють процеси біологічного окислення органічних речовин, перешкоджають біологічному очищенню стічних вод.

Тяжкі екологічні наслідки викликає забруднення води сирою нафтою, нафтопродуктами та неочищеними водами нафтопере­робних заводів.

При потраплянні у воду нафта утворює тонку поверхневу плівку (0,1 мм). Хвилі сприяють тому, що плівка розривається і утворює краплі, які розсіюються в товщі води і проникають на глибину до 5 м.

Під дією сонця та органічних речовин відбувається фото­хімічне і біологічне окиснення нафтової плівки і розсіяних на­фтових крапель. В результаті утворюються поліароматичні вуглеводні, роз­чинні у воді. Вони акумулюються в організмах гідробіонтів, переходять у донні відклади. Похідні нафти мають канцерогенні властивості, і при попаданні в організм людини можуть викли­кати онкологічні захворювання.

 

Лекція 3.Екологічні фактори.

Екологічні фактори. Типи взаємодії між живими організмами.

Екологічні системи.

Загальні принципи стабільності та стійкості екологічних систем.

Основні закони загальної екології.

Екологічні фактори. Типи взаємодії між живими організмами. Вплив середовища на організми зазвичай оцінюють через окремі фактори. Екологічні фактори – складові (елементи) природного середовища, які впливають на існування й розвиток організмів і на які живі істоти реагують реакціями пристосування (за межами здатності пристосування настає смерть). Екологічним фактором є будь-який нерозчленований далі елемент середовища, здатний прямо чи опосередковано впливати на живі організми. Серед них розрізняють фактори прямого впливу на організми (наприклад, промисел) і опосередкованого – вплив на місце проживання (наприклад, забруднення середовища, знищення рослинного покриву, будівництво гребель на ріках тощо).

Розрізняють такі групи екологічних факторів (загальна кількість факторів – близько 60), об'єднані за певною ознакою:

- за часом – фактори часу (еволюційний, історичний, діючий) та періодичності (періодичний і неперіодичний);

- за середовищем виникнення (атмосферні, водні, геоморфологічні, фізіологічні, генетичні, екосистемні);

- первинні та вторинні;

- за походженням (космічні, біотичні, абіотичні, природно-антропогенні, антропогенні);

- за характером (інформаційні, фізичні, хімічні, термічні, біогенні, кліматичні, комплексні);

- за спектром впливу (вибіркової чи загальної дії);

- за умовами дії;

- за об’єктом впливу (летальні, екстремальні, обмежувальні, мутагенні).

В природі екологічні фактори діють комплексно (закон сукупної дії екологічних факторів). Особливо важливо пам’ятати це, оцінюючи вплив хімічних забруднювачів, коли “сумаційний” ефект (на негативну дію однієї речовини накладається негативна дія інших, до чого додається вплив стресової ситуації, шумів, різних фізичних полів – радіаційного, теплового, гравітаційного чи електромагнітного) значно змінює умовні значення ГДК, наведені в довідниках.

 

Інтенсивність фактора

 

Рис. 3.1. Вплив інтенсивності фактора на життєдіяльність організму:

А – екологічний мінімум; В – екологічний максимум.

 

Прояв впливу факторів виражається у зміні життєдіяльності організмів та зміні чисельності популяцій. При цьому слід зазначити такі закономірності:

1) за певних значень фактора складаються найсприятливіші умови для життєдіяльності організмів. Такі умови називають оптимальними, а відповідні значення фактора – оптимумом (рис.3.1);

2) чим більше значення фактора відхиляється від оптимального, тим сильніше пригнічується життєдіяльність особин. У зв'язку з цим виділяють зону їх нормальної життєдіяльності;

3) діапазон значень фактора, за межами якого нормальна життєдіяльність особин стає неможливою, називають межею витривалості. Розрізняють верхню і нижню межі витривалості. Діапазон значень фактора, за межами якого організм почувається пригнічено, називають зоною пригнічення (пecимуму).

Діапазон значень оптимуму і песимуму є критерієм для визначення екологічної валентності (екологічної толерантності; лат. «толеранція» - терпіння) здатності організму пристосовуватися до змін умов серодовища. Екологічна валентність різних видів відрізняється одна від одної: північний олень витримує коливання температури повітря від –55 до 25–30оС, а тропічні корали гинуть вже при зміні температури на 5–6оС. Найбільше поширені організми з широким діапазоном толерантності щодо всіх екологічних факторів. Найвища толерантність характерна для бактерій і синьо-зелених водоростей, які виживають у широкому діапазоні температур, радіації, солоності, рН.

За екологічною валентністю організми поділяють на стено- та еври­біонти. Стенобіонти (грец. «стенос» – вузький та «біос» – життя) ­організми, що можуть жити за дуже незначної зміни факторів середови­ща (температури, кислотності, вологості, солоності тощо). До стенобіон­тів належать орхідеї, далекосхідний рябчик, форель та ін. Еврибіонти (грец. «еурі» – широкий) - організми, що можуть жити за значних змін фак­торів середовища (колорадський жук, пацюки, вовки, таргани, очерет тощо).

Серед сукупності різних факторів виділяють лімітуючі, тобто такі, зна­чення (рівень, доза) яких наближається до межі витривалості організму (значення фактора менше або більше від оптимуму). Найчастіше лімітуючими факторами є температура, світло, тиск, біогенні речовини тощо.

За іншою класифікацією, існують такі групи факторів середовища, які впливають на організми:

- абіотичні (фактори неживої природи - – хімічні (хімічний склад повітря, сольовий склад води, кислотність і склад ґрунтових розчинів); фізичні, або кліматичні (сонячна енергія, температура, вологість, атмосферний тиск, фізичні поля); топографічні (характер рельєфу, висота над рівнем моря); та едафічні (ґрунтові умови зростання рослин – механічний склад ґрунту, вологоємність, альбедо);

- біотичні (фактори живої природи – вплив одних організмів або їхніх угруповань – на інші);

- антропогенні (вплив діяльності людини на живу природу).

Біотичні фактори поділяють на дві групи: внутрішньовидові та міжви­дові взаємодії. Під внутрішньовидовими, або гомотипічними, реакціями розу­міють взаємодію між особинами одного виду. До гомотипічних реакцій належить, зокрема, внутрішньовидова конкуренція — боротьба за можливість вижити, за джерело енергії, яку отримують рослини у вигляді сонячного світла, а тварини у вигляді різної поживи. Тому в боротьбі за оволодіння джерелами енергії відбуваєть­ся напружена конкуренція, виникає суперництво між особинами одного виду. Відносно всіх видів конкуренції існує правило: чим більше збігають­ся потреби конкурентів, тим жорстокіша конкуренція (правило конкурент­ної боротьби). Розрізняють дві основні форми конкуренції — пряму і побічну. Пряма конкуренція, або інтерференція, здійснюється прямим впливом однієї осо­бини на іншу, наприклад, унаслідок агресивних зіткнень між тваринами або виділення токсинів (алелопатія) рослинами та мікроорганізмами. Побічна конкуренція не передбачає безпосередньої взаємодії між особинами. Вона відбувається опосередковано – внаслідок споживання різними тва­ринами одного й того самого ресурсу, який обов'язково має бути обмеже­ним. Тому таку конкуренцію зазвичай називають експлуатаційною.

Міжвидові, або гетеротипічні, реакції – це взаємодії між особинами різних видів. Дві популяції або впливають, або не впливають одна на одну. Якщо вплив є, він може бути сприятливим чи несприятливим.

Симбіоз – явище закономірного, невипадкового співжиття особин (симбіонтів), які належать до різних видів(наприклад, рака-самітника та крабів – з актиніями, паразитичні гриби – з рослинами, утворюючи лишайник). Основними формами симбіозу є мутуалізм, коменсалізм та паразитизм. У випадку мутуалізму жодна зі сторін не може існувати без іншої (наприклад, жуйні тварини (або людина) та мікроорганізми їхнього кишково-шлункового тракту). У випадку коменсалізмуодин організм (коменсал) існує за рахунок іншого (хазяїна), не завдаючи йому шкоди. Такий тип взаємодії проявляється у формі квартирантства (використанні коменсалом для оселення організму хазяїна або частини його середовища проживання) або нахлібництва (живлення залишками їжі хазяїна). Наприклад, так звані риби-«прилипайли» пересуваються, приліпившись до акули чи іншої великої риби; вони також живляться об’їдками, що залишаються після хазяїна. Інший приклад харчових коменсальних стосунків демонструють деякі види птахів, які рухаються за колонами мандрівних мурашок і ловлять комах, павуків і дрібних плазунів, що їх сполохує на своєму шляху мурашина навала.

Паразитизм є специфічною формою співжиття (симбіозу) організмів різних видів, з яких один (паразит) використовує іншого (хазяїна) як середовище існування та джерело живлення. Хазяїн, як правило, не гине відразу, а деякий час викорис­товується паразитом. А відтак, паразитизм можна розглядати як особли­ву форму хижацтва.

Хижацтвом називають таку взаємодію між організмами різних видів, за якої один (хижак) поїдає іншого (жертву). Хижацтво відіграє важливу роль у регулюванні кількісного складу популяцій.

Аменсалізм – форма взаємодії організмів різних видів, за якої один із них (аменсал) потерпає від пригнічення росту і розмноження, а другий (інгібітор) не зазнає шкідливого вливу, але й не має користі для себе. Аменсалізм спостерігається, наприклад, між плісеневими грибами роду Penicillium, які продукують антибіотик пеніцилін, і бактеріями, ріст яких при цьому пригнічується.

Вирішальне значення в природі має міжвидова конкуренція, оскільки вона більшою мірою, ніж інші гетеротипічні реакції, визначає роль видів в екосистемах.

Міжвидова конкуренція – це така взаємодія, коли два види суперничають через одні й ті самі джерела існування – поживу, життєвий простір тощо. Причому вона виникає в тих випадках, якщо використан­ня джерела ресурсів одним видом призводить до обмеженого викорис­тання його іншим.

 

 

Рис. 3.2. Структура екологічної системи

 

Внутрішньовидова конкуренція сильніша від міжвидової, однак пра­вило конкуренції поширюється на останню. Конкуренція між двома вида­ми тим сильніша, чим ближчі їхні потреби. Два види з цілком однакови­ми потребами не можуть існувати разом: один з них через деякий час обо­в'язково буде витіснений (принцип конкурентного витіснення, або прин­цип Гаузе).

Екологічні системи. Основною функціональною одиницею біосфери є екологічна система (екосистема), до складу якої входять живі організми та абіотичне середо­вище (рис.3.2). Екосистема – єдиний природний або при­родно-антропогенний комплекс, утворений живими організмами та се­редовищем їх існування, в якому живі й неживі компоненти поєднані між собою причинно-наслідковими зв'язками, обміном речовин та розподілом потоку енергії.

Екологічна система є функцією біоценозу Бз, біотопу Бm, обміну речовин (Р), енергії (Ея) та інших екологічних факторів ∑Еф:

Е = f (Бзm, Р,Ея ∑Еф)

Біоценоз– це сукупність живих організмів, які взаємодіють між собою за допомогою трофічних або просторових зв’язків і населяють більш-менш однорідну ділянку суші чи води. Послідовна зміна біоценозів, що спадкоємно виника­ють на одній і тій самій території внаслідок природних чи антропогенних факторів, називається сукцесією (рис.3.3).

 

Час, рік

 

Рис. 3.3. Сукцесія сибірського темнохвойного лісу

після спустошливої лісової пожежі (узагальнена схема)

 

Стійкою екологічною системою є біогеоценоз. Біогеоценоз (рис.3.4) однорідна ділянка суходолу чи водної поверхні з певним складом живих (біоценоз) та неживих (приземний шар атмосфери, ґрунт, вода, сонячна енер­гія) компонентів, що динамічно взаємодіють між собою в процесі обміну речовин та енергії. Біогеоценоз є більш загальним поняттям і його складови­ми є біотоп і біоценоз.

Рис. 3.4. Схема будови біогеоценозу (за В.М.Сукачовим)

Біотоп– ділянка суходолу чи водойми з однотипни­ми умовами рельєфу, клімату та інших абіотичних факторів, яку займає пев­ний біоценоз. Біотоп – неорганічний компонент біогеоценозу. Отже, біоце­ноз – спільнота живих організмів, що мешкають у межах одного біотопу.

У кожній екосистемі можна виділити такі компоненти:

1) неорганічні речовини (вуглець, азот, вуглекислий газ, вода та ін.), які вступають у колообіг;

2) органічні речовини (білки, вуглеводи), які об’єднують біотичну та абіотичну частини екосистеми;

3) клімат (температура, вологість, тиск та ін.);

4) продуценти – виробники живої органічної речовини з неорганічної (це - переважно рослини), Продуцентами є автотрофні (хемо- та фототрофні) організми, що продукують органічну речовину з неорганіч­ної. Продуценти є первинного ланкою ланцюгів живлення;

5) консументи( рослино- та м'ясоїдні тварини) – організми, які споживають органічну речовину, створену продуцентами або перетворену консументами нижчих рівнів екологічної піраміди. Розрізняють консументи першого порядку (травоїдні), другого і вищих порядків (хижаки, паразити тощо);

6) редуценти – організми (пе­реважно бактерії, гриби), які в процесі життєдіяльності перетворюють, розкладають органічні рештки на неорганічні речовини, тобто на прості мінеральні сполуки. Редуценти є заключною ланкою ланцюгів живлення.

Екологічна ніша – діапазон (відповідно до абіотичних та біотичних факторів) умов, за яких живе і відтворює себе популяція. Тобто це загальна сума вимог організму до умов існування, включаючи простір, який він займає, функціональну роль у співтоваристві (наприклад, трофічний статус) та його толерантність стосовно факторів середовища – температури, вологості, кислотності, складу ґрунту тощо.

Загальні принципи стабільності та стійкості екологічних систем. Основою стабільності та стійкості екологічних систем є біологічне різноманіття – варіативність живих організмів на всіх рівнях біологічної організації.

В 1992 році самміт ООН з питань довкілля в Ріо-де-Жанейро прийняв Конвенцію про біорізноманіття та визначення біорізноманіття як «мінливості серед живих організмів із будь-яких ареалів, включаючи, зокрема, суходольні, морські та інші водні, та серед екологічних комплексів, частинами яких вони є: це включає мінливість всередині видів, між видами, та між екосистемами».

Високе біорізноманіття забезпечує стабільність та продуктивність екосистем. Різні види, займаючи відповідні екологічні ніші, забезпечують використання ресурсів. Конкуренція за ресурси між видами сприяє ефективнішому природному добору.

Біологічне різноманіття складається з видового, популяційного, ценотичного та генетичного різноманіття.

Внаслідок господарювання людини відбулися значні зміни в ландшафтах та середовищах існування. Різко зменшилася площа, зайнята природними угрупованнями. Спостерігається антропогенне забруднення значних територій, в т.ч. важкими металами, радіонуклідами, стійкими органічними сполуками, що загрожує втратою гено-, цено- та екофонду та формує соціально-екологічний дискомфорт населення.

У 2004 р. урядом України схвалено «Концепцію загальнодержавної програми збереження біорізноманіття на 2005-2025 роки», основними завданнями якої є мінімізація негативного впливу на біорізноманіття та максимальне зміцнення природної основи біорізноманіття. Метою Програми є: подолання тенденції деградації живої компоненти довкілля; екологізація сфер суспільної діяльності, яка може негативно впливати на компоненти біорізноманіття та довкілля; максимальне відтворення первинного стану природних комплексів.

У Програмі йдеться, зокрема про таке. Біота України нараховує понад 70 тис. видів, з них флора та мікобіота - понад 27 тис. (гриби і слизовики - 15 тис., водорості - 5 тис., лишайники - 1,2 тис., мохи - 800 і судинні рослини - 5,1 тис., фауна - понад 45 тис. видів (з них комахи - 35 тис., членистоногі без комах - 3,4 тис., черви - 3,2 тис. тощо).

За багатством біорізноманіття Україна поступається в Європі тільки Франції, і це покладає на неї високу відповідальність за його збереження. Негативний вплив техногенних факторів призвів до значної деградації екосистем та екологічної кризи глобального характеру, а саме - зміни клімату, зменшення товщини озонового шару, забруднення екотопів важкими металами, нафтопродуктами, хімічними речовинами, випадання кислотних дощів і поширення явищ спустелювання, унаслідок чого 65 відсотків екосистем світу вже знищено або істотно змінено.

Основні закони загальної екології. На думку відомого еколога Д. Чіраса, природа розвивається і функціонує за чотирма основними принципами:

- рециклічності, або повторного багаторазового використання найважливіших речовин;

- постійного відновлення ресурсів;

- консервативного споживання ( коли живі істоти споживають лише те й у такій кількості, яка їм необхідна);

- популяційного контролю (природа не допускає вибухоподібного росту популяцій, регулюючи кількість особин того чи іншого виду створенням відповідних умов для його існування та розмноження).

Більшість цих та інших екологічних принципів і законів вдало узагальнив американський еколог Б. Коммонер у 1974 р., інтегрувавши їх до чотирьох законів.

Закон перший: у природі все взаємопов’язане. Екологія розглядає біосферу нашої планети як складну систему з багатьма взаємопов'язаними елементами. Ці зв'язки реалізуються за принципами зворотного негативного зв'язку (згадаємо, наприклад, систему «хижак–жертва»), прямих зв'язків (в екосистемах «працюють» усі дії логічної алгебри – «або», «і», «не»), а також завдяки різноманітним взаємодіям, що взаємно виключають одна одну. За рахунок цих зв'язків формуються гармонійні системи кругообігу речовин та енергії. Будь-яке втручання в роботу збалансованого механізму біосфери викликає відповідь одразу за багатьма напрямами, що робить прогнозування в екології надзвичайно складною справою.

Закон другий: ніщо в природі не зникає безслідно, усе має кудись діватися. За своєю сутністю це – фундаментальний закон Природи про вічність матерії. На прикладі біологічного кругообігу видно, як рештки та продукти життєдіяльності одних організмів є в природі джерелом існування для інших. В природній екосистемі екскременти і відходи одних організмів слугують їжею для інших. Вуглець, який виділяють тварини у вигляді вуглекислого газу є поживною речовиною для більшості рослин. Рослини продукують кисень, який використовують тварини. Органічні відходи тварин слугують їжею для бактерій, які розщеплюють їх на дрібні елементи. Відходи бактерій – це неорганічні речовини, такі як азот, фосфор, вуглець, якими живляться водорості.

Людина поки що не створила такого гармонійного колообігу в своїй господарській діяльності. Будь-яке виробництво, крім необхідної продукції, утворює відходи; ці відходи накопичуються, знову втягуються у колообіг речовин і призводять до непередбачуваних наслідків.

Закон третій: природа знає краще. «Живе складається з багатьох тисяч різноманітних органічних сполук, — пише Б. Коммонер, — і часом здається, що принаймні деякі з них можуть бути поліпшені, якщо їх замінити якимось штучним варіантом природної субстанції».

Третій закон екології стверджує, що штучне введення органічних речовин, які не існують у природі, а створені людиною і беруть участь у функціонування живих систем, завдасть скоріше шкоди. Одним із найдивовижніших фактів у хімії живих речовин є те, що для будь-якої органічної субстанції, виробленої живими істотами, в природі є фермент, здатний цю субстанцію розкласти. Тому, коли людина синтезує нову органічну сполуку, яка за структурою значно відрізняється від природних речовин, цілком імовірно, що для неї немає розкладального ферменту, й ця речовина «накопичуватиметься». Другий закон допомагає зрозуміти, які наслідки матиме таке накопичення.

Закон четвертий: ніщо не дається задарма. «Глобальна екосистема є єдиним цілим, і все, що вилучається з неї людською працею, має бути відшкодоване. Сплати за цим векселем не можна уникнути, її можна лише відстрочити», – пише Б. Коммонер.

Четвертий закон стверджує: природні ресурси не є нескінченними. Людина в процесі своєї діяльності нині бере у природи в «борг» частину її продукції, залишаючи під заставу ті відходи й ті забруднення, яким не може чи не хоче запобігти. Цей борг зростатиме доти, доки існування людства не опиниться під загрозою й люди сповна не усвідомлять необхідність усунення негативних наслідків своєї діяльності. Це усунення потребуватиме дуже великих затрат, які й стануть сплатою цього боргу.

Закон біогенної міграції атомів(закон Вернадського). У біосфері відбувається постійний колообіг активних елементів, які переходять від одного організму до іншого, у неживу природу і знову до організму. Елементи, які вивільняються за допомогою мікроорганізмів при гнитті, надходять у ґрунт і атмосферу, знову включаються до колообігу речовин біосфери, поглинаючись живими організмами. У цьому й полягає біогенна міграція атомів. Для цього процесу характерним є накопичення хімічних елементів у живих організмах та їхнє подальше вивільнення у результаті розкладу мертвих організмів.

Біогенна міграція є частиною загальної міграції хімічних елементів біосфери. Головною геохімічною особливістю живої речовини є те, що вона, пропускаючи крізь себе атоми хімічних елементів земної кори, гідросфери та атмосфери, здійснює у процесі життєдіяльності їх закономірну диференціацію. Завершивши свій життєвий цикл, організми повертають природі все, що взяли у неї протягом життя.

В.І.Вернадський підрахував, що за час існування на Землі біосфери створено 3,5.1019 т біомаси, що майже в 2 рази перевищує масу всієї земної кори, яка становить 2.1019 т.

Жива речовина значно прискорила і змінила колообіги різних речовин – води, кисню, азоту, вуглекислого газу тощо. Сучасний склад атмосфери створений завдяки діяльності живої речовини. Обмін повітря між всіма широтами і півкулями Землі відбувається в середньому за 2 роки. Активно переміщується течіями океанічна вода. Вся прісна вода стікає в океан за 14 діб, у льодовиках вода оновлюється за 15 000 років. Жива речовина активно регулює геохімічну міграцію атомів: зберігається стабільність біосфери і здійснюється еволюція як живих організмів, так і всієї біосфери в цілому. Цей особливий вид стану рівноваги, що постійно змінюється, В.І Вернадський називав динамічною рівновагою.

Закон константності біосфери(закон Вернадського). Загальна кількість живої речовини біосфери для даного геологічного періоду є постійною величиною, константою. При зростанні чисельності одного виду (наприклад, людини), зменшуватиметься чисельність інших видів (рослин та тварин).

Закон максимуму біогенної енергії(закон Вернадського-Бауера). За суперництва з іншими системами виживає та, яка найкращим чином сприяє надходженню енергії і яка використовує максимальну її кількість найбільш ефективним способом.

Закон вектора розвитку. У природі будь-який розвиток є односпрямованим. Неможливо прожити життя в зворотному напрямку, тобто від смерті до народження, від старості до молодості. Життя живих систем у природі відбувається лише один раз і в одному напрямку.

Закон мінімуму (закон Лібіха). Витривалість живого організму є найслабшим місцем у низці його екологічних потреб. Це означає, що життєві можливості організму обмежує той екологічний фактор, кількість якого близька до необхідного мінімуму для організму або екосистеми. Подальше зниження його веде до загибелі організму або до деструкції екосистеми.

Юстус Лібіх (1803 – 1873) – видатний німецький хімік, який започаткував основи агрохімії й теорії мінерального живлення рослин. Він першим почав вивчати вплив різних факторів на ріст рослин; при цьому ним було встановлено, що урожай культур часто лімітується не тими елементами живлення, які потрібні в значній кількості, а навпаки – тими, що потрібні в малих кількостях (наприклад, цинк), але яких у землі дуже мало. Висновок “Речовина, що знаходиться в мінімумі, керує врожаєм і визначає величину і стійкість останнього у часі” став відомий як закон мінімуму Ю.Лібіха.

Закон екологічної толерантності (екологічної валентності) (закон Шелфорда).Шелфорд показав, що відсутність або неможливість розвитку екологічної системи визначається не лише нестачею, але й надлишком будь-якого з факторів (тепло, світло, вода і т.д.). Життєдіяльність будь-якого організму можлива лише в певних межах значень екологічного фактора, за межами цих значень (як мінімального, так і максимального) життя неможливе (рис.3.1).

Значення екологічного фактора між його мінімальним і максимальним значенням називається зоною толерантності. В межах зони толерантності виділяють зону нормальної життєдіяльності – в межах якої організм (чи популяція) не лише виживає, а й здійснює всі притаманні даній системі функції (ріст, живлення, розмноження). Межі, за яких усі процеси життєдіяльності відбуваються у найбільш сприятливих умовах, називають зоною оптимуму.

Закон незворотності еволюції (Л. Долло, 1893 р.). Живий організм (вид, популяція) не може вернутись до колишнього стану, який пройдений його предками. Наприклад, наземні хребетні тварини в процесі вторинного пристосування до життя у воді не стають знову рибами і не набудуть ознак, властивих рибам (наприклад, зябер та ін.).

Закон незліквідованості відходів, або закон побічних впливів виробництва (господарства).Для будь-якого господарського циклу характерним є утворення відходів. Відходи можуть бути лише переведені із однієї форми в іншу або переміщені в просторі.

Закон послідовності проходження фаз розвитку. Для природної екосистеми фази розвитку можуть проходити лише в еволюційно закріпленому (історично та екологічно зумовленому) порядку, звичайно від простого до складного.

Закон зниження енергетичної ефективності природокористування. У природі в ході історичного розвитку при одержанні корисної продукції на її одиницю в середньому витрачається все більша кількість енергії.

Закон ноосфери (перетворення біосфери в ноосферу, В. І. Вернадський). На сучасному рівні розвитку людської цивілізації біосфера неминуче перетвориться в ноосферу, тобто в сферу, де розум людства в розвитку природи відіграє основну роль.

Закон розвитку природної системи за рахунок навколишнього середовища. Будь-яка природна система може розвиватись лише за рахунок використання матеріальних, енергетичних та інформаційних можливостей навколишнього середовища. Абсолютно ізольований саморозвиток живої системи неможливий. Згідно з законами термодинаміки, можна стверджувати:

- неможливі ні абсолютно безвідходне виробництво, ні «вічний двигун»;

- використовуючи і видозмінюючи середовище життя будь-яка більш високоорганізована біологічна система (вид живого) становить собою потенційну загрозу для більш низькоорганізованих систем. Саме завдяки цьому в земній біосфері неможливо відродити життя, яке було або буде знищене іншими організмами;

- біосфера Землі розвивається не лише за рахунок природних ресурсів планети, а й за рахунок та під впливом космічних систем і, в першу чергу, Сонця.

Закон фізико-хімічної єдності живої речовини (В. І. Вернадський). Вся жива речовина Землі фізико-хімічно єдина. Із цього закону випливає важливий висновок: те, що шкідливе для одних видів істот, є шкідливим і для інших. Будь-які фізико-хімічні фактори впливу, які є смертельними для одних організмів, не можуть не завдавати шкоди іншим живим організмам. Наприклад, тривале використання пестицидів у сільському господарстві є екологічно неприпустимим: шкідники швидко пристосовуються та виживають, а обсяги хімічних речовин, які є забрудниками, доводиться дедалі збільшувати).

Закон екологічного лиха. Стосується території чи акваторії, в межах яких спостерігається перехід стану природного середовища від катастрофічної фази до фази колапсу, що робить її (територію чи акваторію) непридатною для життя.

Правило Лібіха, або закон обмежувального фактора (правило мінімуму), має таке тлумачення: в комплексі факторів сильніше діє той, який ближче до межі витривалості.

Правило взаємодії факторів полягає в тому, що одні фактори можуть підсилювати або пом'якшувати силу дії інших факторів. Наприклад, над­лишок тепла може деяким чином пом'якшувати зниження вологості повітря. Проте це не означає, що фактори можуть взаємозамінюватися.

Закон лімітуючого фактора лежить в основі теоретичного обrрунту­вання величини гранично допустимої концентрації (ГДК) або гранично допустимої дози (ГДД) забрудників. Цілком зрозуміло, що стосовно забруднювальних речовин нижня межа толерантності не має значення, а верхня не повинна збільшу­ватися ні за яких умов. Тому ті порогові значення фактора, за яких ворганізмі ще не відбувається жодних необоротних патологічних змін, які встановлюють експериментально, і слід приймати як ГДК (ГДД).

Потрібно брати до уваги закон рівнозначності умов життя: всі природні умови середовища, необхідні для життя, відіграють рівнозначні ролі. З нього випливає закон сукупної дії екологічних факторів.

 

 

Лекція 4.Забруднення довкілля відходами виробництва.

Класифікація забруднень довкілля. Матеріальні та енергетичні забруднення. Нормування забруднень.

 

Класифікація забруднень довкілля. Приблизно до XIII століття (коли чисельність населення становила 300-350 млн. чоловік) природа активно переробляла всі надхо­дження речовин у біосферу, тобто відбувалося самоочищення. Продукти діяльності людини були переважно ор­ганічного походження. Після перетворення їх редуцентами на неорганічні сполуки вони включалися в природний колообіг речовин. Знаряддя праці чи предмети вжитку, хоча й мали неорганічну природу, використовувались у відносно невеликій кількості, і це не становило загрози для навколишнього природного середовища. Проте в подальшому – із зростанням чисельності населення – значно збільшувалися його матеріальні та енергетичні потреби; для задоволення цих потреб люд­ство почало використовувати багато нових речовин (порох, кислоти, солі, пізніше – різні хімічні препарати для боротьби з шкідниками сільського господарства тощо), які були не властиві природі, і, за умови їх зростаючої кількості вона не встигала до них адаптуватися. Ці речовини не включалися в природ­ний процес колообігу речовин, що призвело до їх накопичення і стало завдавати значної шкоди екосистемам загалом і людині зокрема.

Забруднення – це внесення у навколишнє середовище або виник­нення в ньому нових, зазвичай не характерних хімічних і біологічних речо­вин або внесення в надлишковій кількості будь-яких уже відомих речовин, які чинять шкідливий вплив на людину та природні екосистеми і яких природа не здатна позбутися самоочищенням. Забруднення бувають природними, тобто спричиненими природ­ними, зазвичай катастрофічними чинниками (повені, виверження вулка­нів) та антропогеними (зумовлені діяльністю людини). Речовини, які спричи­нюють забруднення, називають забрудниками, або полютантами.

Існують різні принципи класифікації забруднень навколишнього се­редовища – за типом походження, за часом взаємодії з довкіллям, за способом впливу тощо.

За просторовим поширенням (розміром тери­торій, що охоплюють) розрізняють:

· локальні забруднення (є характерними для міст, значних промислових підприємств, районів видобутку тих або інших корисних копалин, великих тваринницьких комплексів);

· регіональні забруднення охоплюють значні території й акваторії, що підлягають впливу промислових районів;

· глобальні забруднення найчастіше зумовлені викидами шкідливих речовин в атмосферу; вони поширюються на великі відстані від місця виникнення і створюють несприятливий вплив на цілі регіони, а іноді й на всю планету.

За силою та характером дії на навколишнє середовище забруднення бувають:

· фонові;

· імпактні (від англ. іmpact – удар; синонім — залпові);

· постійні (перманентні);

· катастрофічні.

За джерелами виникнення забруднення поділяють на:

· промислові (наприклад, зумовлені оксидом сульфуру SО2). Одним із головних джерел забруднення повітря є спалювання палива на ТЕС і ТЕЦ. Під час спалювання І т вугілля утворюється до 23 кг попелу, 15 кг оксиду сульфуру (IV). У багатьох містах України концентрації за­бруднювальних речовин у кілька разів перевищують ГДК;

· транспортні. Вихлопні гази автомобільного транспорту містять у середньому 4-5 % оксиду карбону (II), сульфуровмісні сполуки, ненасичені вуглеводні й альдегіди, сполуки плюмбуму – в разі застосування етильованого бензину, та канце­рогенні сполуки. Легковий автомобіль під час руху викидає за 1 годину до 3 м3 оксиду карбону (II) СО, а вантажний – понад 6 м3;

· сільськогосподарські. У сільському господарстві для підвищення врожаїв і продуктивності зе­мель застосовують пестициди, які змиваються з полів у ріки, озера та інші водойми;

· побутові (наприклад, синтетичні мийні засоби).

За типом походження розрізняють:

· фізичне забруднення – забруднення, спричинені впливом теплових, електричних, радіаційних та світлових полів у природному середовищі, а також шумом та вібраціями.Фізичне забруднення води полягає у зміні її фізичних властивос­тей: прозорості, вмісту зависей та інших нерозчинних домішок, темпера­тури і радіоактивності. Тверді завислі часточки зменшують прозорість води, пригнічую­чи таким чином процеси фотосинтезу водяних рослин, забивають зябра риб тощо. Особливу небезпеку для біосфери становлять радіоактив­ні домішки, що потрапляють у водойми з викидами АЕС та ТЕС;

· механічне забруднення – забруднення твердими частинками та предметами (викинутими як непридатні, спрацьовані, вилучені з ужитку);

· хімічне забруднення – забруднення твердими, газоподібними та рідкими хімічними речовинами, які надходять у біосферу, порушуючи встановлені природою процеси кругообігу речовин і енергії. Залежно від виду виробництва відходи підприємств містять різні шкідливі сполуки неорганічної (луги, кислоти, мінеральні солі) та органічної (органічні спо­луки, поверхнево-активні речовини, мийні засоби, пестициди, нафтопро­дукти тощо) природи. Значну кількість органічних сполук, не властивих природі (ксенобіотиків), містять стічні води хімічних підприємств органічного синтезу, вироб­ництва пластмас і мийних засобів (детергентів). Ці сполуки поглинаються фітопланктоном і передаються ланцюгами живлення більш високоорганізованим організмам. У результаті вміст шкідливих речовин у м'ясі хижої риби (щука, судак, окунь) може у десятки і сотні разів пере­вищувати їх вміст у воді.

· біологічне (бактеріологічне) забруднення – забруднення, спричинене патогенними мікроорганізмами (вірусами, бактеріями, грибками), деякі з яких з’явилися завдяки діяльності людини (бактеріологічна зброя, нові віруси, а також катастрофічне розмноження рослин чи тварин, переселених з одного середовища в інше людиною чи випадково. Найбільшими джерелами біологічного забруднення є підприємства шкірообробної промисловості, м'ясокомбінати та цукрові заводи, комунальне господарство.

Забруднення класифікують і за агрегатним станом забруднювальних речовин (газоподібні, тверді, рідкі та комбіновані),а такожза токсичністюзабрудників(надзвичайно небезпечні (І клас небезпеки), високо небезпечні (ІІ клас небезпеки), помірно небезпечні (ІІІ клас небезпеки), мало небезпечні (ІVклас небезпеки)).

Матеріальні та енергетичні забруднення. Згідно з іншою класифікацією, усі антропогенні забруднення біосфери поділяють на дві основні групи – матеріальні та енергетичні.

До матеріальнихзабруднень належать забруднення, зумовлені:

· хімічно інертними (нетоксичними) речовинами. До цієї групи належать нетоксичні викиди в атмосферу (газоподібні, рідкі, твер­ді та змішані), стічні води (умовно чисті й брудні) та тверді відходи (нетоксичні);

· хімічно активними (токсичними) речовинами. До них належать хімічні сполуки: загальносоматичної дії (зумовлюють отруєння всього організму – оксиди карбону, ціанисті сполуки, свинець ртуть, арсен та його сполуки), подразнювальні (викликають подразнення дихальних шляхів та слизової оболонки – хлор, аміак, озон, ацетон, фторид гідрогену), сенсибілізуючі (алергени – розчинники, лаки), канцерогенні (призводять до ракових пухлин, азбест, радон, оксиди хрому), мутагенні (зумовлюють зміну спадкової інформації (свинець, радій, уран).

Енергетичні забруднення зумовлені шумом, вібра­ціями, тепловими викидами, ультразвуком, електромагнітними полями, світловим, лазерним, інфрачервоним, ультрафіолетовим та іонізуючим випромінюванням.

Шумове забруднення. Шум – це сукупність звуків різноманітної частоти та інтенсивності, що виникають у результаті коливального руху частинок у пружних середовищах (твердих, рідких, газоподібних). Шумове забруднення – це неприємні та небажані звуки, які заважають нормально працювати, сприймати потрібні звукові сигнали і викликають різні порушення екосистем.

Шуми негативно впливають на здоров'я людей, знижують їх працездатність, призводять до захворювань серцево-судинної (гіпертонія), нервової та ендокринної систем та органів слуху.

Рівень звукового тиску шумів вимірюють децибелами (дБ). Це умовні одиниці характеристики сили звуку, які показують, наскільки звук (шум) у логарифмічних відносних одиницях вищий за поріг слухо­вого сприйняття людини. Звичайна розмова ведеться в межах інтенсив­ності звуку 30-60 дБ, що відповідає частоті 250–10000 Гц. У разі постійного шуму силою 70 дБ виникає розлад ендокринної та нервової систем, 90 дБ – порушується слух, 140 дБ – з'являється нестерп­ний фізичний біль (140 дБ – т.зв больовий поріг). Всередині приміщень різного призначення рекомен­дують діапазони шумів: для сну, відпочинку – 30–45 дБ; для виробни­чих приміщень – 56–70 дБ (для порівняння: цокання годинника – близько 30 дБ, робота телевізора – до 95 дБ, рух поїзда – 95–100 дБ, лі­така в повітрі – понад 105 дБ.

Характер шуму залежить від його джерела. У зв’язку з цим розрізняють шуми механічного, електромагнітного, аеро- та гідродинамічного походження.

Механічні шуми виникають при зіштовхуванні, терті деталей і механізмів, а також при ударних процесах (кування, штампування, клепання). Джерелами механічного шуму є такі елементи обладнання, як підшипники кочення і зубчасті передачі. Шум зростає із збільшенням швидкості обертання.

Аеро- і гідродинамічні шумивиникають при русі з великою швидкістю газу, пари або рідини в результаті пульсації тиску, зумовленої турбулентними процесами у вільному потоці або біля границь обтічного тіла (напр., в машинах з робочими деталями, що обертаються).

Електромагнітні шуми виникають в електричних машинах і обладнанні в результаті взаємодії феромагнітних мас під впливом змінних магнітних полів.

Частотний склад шуму називають спектром шуму; він дає можливість визначити джерело шуму і допомагає вжити ефективних заходів з його зменшення. Будь-яке джерело шуму має свій, характерний для нього спектр. За характером спектру виробничі шуми поділяються на широкосмугові (з неперервним спектром шириною більше однієї октави) і тональні, в спектрі яких прослуховуються окремі тони (напр., шум дискової пили).

За спектральним складом розрізняють шуми низько-, середньо- та високочастотні з переважанням складових частотою коливання відповідно до 300, від 300-800 і вище 800 Гц. Найбільш подразнювальними є високочастотні шуми (свист повітря, брязкіт металу). Гранично допустимі норми шуму залежать від частоти звуку. Низько­частотні шуми за рівня до 100 дБ не завдають особливої шкоди слуху. Проте високочастотні є небезпечними при рівнях понад 75–80 дБ.

В боротьбі з виробничим шумом застосовуються, не враховуючи індивідуальних засобів захисту, два основних методи:

- зменшення шуму в джерелі його виникнення;

- послаблення шуму на шляху його розповсюдження.

Вібрації – це коливання механізмів, машин та їх елементів. Є корисна вібрація, яка використовується в технологічних процесах, і шкідлива.

При вібрації виробничого механізму коливальні та обертальні рухи передаються предметам та людині, які з ним контактують. Джерелом вібрацій є шліфувальні машини, ріжучий інструмент станків тощо.

Вібрація негативно впливає на центральну нервову систему, шлунково-кишковий тракт, вестибулярний апарат та викликає запаморочення, оніміння кінцівок та захворювання суглобів.

Вібрація є причиною виникнення фахових захворювань – віброзахворюваннь, лікування котрих можливе лише на ранніх стадіях. Хвороба проявляється у порушеннях опорно-рухового апарату, незворотних змінах в кістках і суглобах, зсувах у черевній порожнині, відхиленнях нервово-психічної діяльності; людина частково або цілком утрачає працездатність.

Вібрація буває загальною (коливання передаються всьому тілу від механізмів через підлогу, сидіння або робочий майданчик) і локальною (зумовлена коливаннями інструмента чи устаткування, що передаються до окремих ділянок тіла). Найнебезпечнішою є загальна вібрація частотою 6–9 Гц, оскільки вона збігається з частотою власних коливань внутрішніх органів людини. В результаті цього може виникнути резонанс, це призводить до переміщень і механічних ушкоджень внутрішніх органів. Так, частота власних коливань серця, внутрішніх органів і груд­ної клітки становить 5 Гц, головного мозку – 20 Гц, центральної нервової системи – 250 Гц.

Боротьба з вібрацією, які і боротьба із шумом, може здійснюватися двома шляхами – в джерелі виникнення і на шляху її розповсюдження. Зменшення вібрації на шляху розповсюдження здійснюється трьома основними методами – віброізоляцією, віброгасінням та вібропоглинанням.

Сутьвіброізоляції(яка використовується на практиці найчастіше) полягає в тому, що між джерелом вібрації (машиною або її частиною, фундаментом, підлогою, настилом, плитою перекриття) і об’єктом, який необхідно захистити, поміщаються пружні елементи – амортизатори, які перешкоджають передаванню коливань.

Для зниження вібрації окремих конструкцій і агрегатів застосовують віброгасіння, яке здійснюється за рахунок дії на захищуваний об’єкт приєднаних до нього додаткових коливальних систем з належним чином підібраною масою.

Вібропоглинання(вібродемпфірування) полягає у нанесенні на вібруючі поверхні спеціальних покрить (жорстких та м’яких). Матеріалом для жорстких покрить є тверді пластмаси, листи яких наклеюють на поверхню вібруючої конструкції. Такі покриття ефективні на низьких і середніх звукових частотах. Для зниження рівня вібрацій, які генерують високочастотні шуми, застосовують м’які матеріали – гуму, фетр, войлок, пінопласт.

Теплове забруднення є наслідком теплових викидів переважної біль­шості промислових підприємств, устаткування і машин, що використову­ють процеси горіння, нагрівання, вибуху. Найбільшими джерелами тепло­вого забруднення є ТЕС і АЕС.

Теплові агрегати мають невисокий тепловий ККД і викидають в атмосферу знач­ну кількість теплоти. Теплове забруднення зумовлене і скиданням у водойми теплих вод з різних енергетичних установок.

Надходження нагрітих вод у ріки й озера істотно змінює їх термічний і біологічний режими та зменшує біопродуктивність. Верхня межа витривалості організмів стосовно температурного фактора не перевищує 40–45°С (оптимум становить 15–30 °С; лише окремі види бактерій і водоростей можуть жити і роз­множуватися за температури 80–88°С). Підвищення температури води у водой­мах призводить до таких наслідків: до 26°С шкідливого впливу не спостерігається; в інтервалі 26–З0 °С відбувається пригнічення життє­діяльності риб; при температурі понад З0°С спостерігається шкідлива дія на біоценози, а за 34–36 °С гине риба та деякі види інших організмів. У теплих водах порушуються умови нересту риб, гине зоопланктон, риби уражуються паразитами і хворобами.

Головними джерелами електромагнітного випромінювання є радіотелевізійні та радіолокаційні станції, засоби радіозв'язку, високовольтні лінії електропередачі (ЛЕП), електростанції й трансформаторні підстанції, а також лінії електротранспорту (особливо метрополітени). Величина електромагнітного поля поблизу потуж­них ЛЕП (понад 1000 кВ) перевищує норму в 20 разів. Мірою забруднен­ня електромагнітними полями є напруженість електромагнітного поля, яка вимірюється у В/м2. Нормою вважається напруженість електромагнітного поля, що дорівнює 2,5 Вт/ м2.

Електричне поле завжди присутнє навколо будь-яких електричних приладів (навіть тих, що тимчасово не працюють, але приєдані до джерела живлення).

Великі міста постійно вкриває електромагнітний смог. Звичайно, його неможливо зауважити візуально, як зауважуємо дим від заводських труб чи відвали промислових і побутових відходів. Але, власне, електромагнітне забруднення фахівці зараховують до найнебезпечніших екологічних факторів, хоча його дія остаточно ще не вивчена. Поки що навіть важко спрогнозувати, чим обернеться тривале перебування людини в умовах щільного електромагнітного поля, бо минуло ще не так багато часу, відколи мобільний зв'язок, високочастотні побутові прилади та комп'ютерна техніка увійшли в повсякденне життя.

Якісний мобільний зв'язок у містах забезпечують кілька сотень базових станцій стільникового зв'язку. У санітарному паспорті базової станції вказується карта-схема навколишньої території та позначаються три круглі плями – чорного і сірого кольорів. Так маркується територія, на якій не допускаються житлові забудови вище 19 та 22 метрів відповідно. На таких висотах у зонах базових станцій рівень випромінювання сягає критичної межі. Чи завжди будівельники дотримуються цих норм?

Наше тіло складається з частинок, які обертаються під дією електричних потоків. Зовнішнє магнітне поле порушує ці потоки, вносячи у клітини негативну інформацію. Наслідками є порушення сну, депресія, склероз, вроджені аномалії, пухлини, лейкемія.

Особливо небезпечним забрудником природного середовища є іонізаційне випромінювання, зокрема радіація. Радіаційний фон Землі зумовлений:

1) космічним випромінюванням;

2) випромінюванням від радіоактивних ізотопів природного походження, які присутні в літосфері, гідросфері, атмосфері та біосфері. Це:

§ довгоживучі радіоактивні елементи, які знаходяться посередині періодичної таблиці Д.І.Менделєєва і мають масові числа від 40 до 190 (40К, 40Са, 87Rb, 130Te тощо);

§ радіоактивні ізотопи, які входять до складу уран-радієвої (материнські радіонукліди 238U і 226Ra) та торієвої (материнський радіонуклід 232Th) радіоактивних родин;

3) випромінюванням від штучних радіонуклідів, які утворилися при випробуваннях ядерного зброї (і випали на поверхню Землі у вигляді радіоактивних опадів), при роботі підприємств атомної промисловості та підприємств, які працюють з радіоактивними речовинами.

Перших два компоненти визначають природний радіаційний фон. Однак антропогенна діяльність людини призводить до перерозподілу природної радіоактивності. Це, зокрема, виготовлення будівельних матеріалів з відходів переробної промисловості та природних компонентів, що мають підвищену питому радіоактивність, газо-аерозольні викиди в атмосферу продуктів спалювання палива, потрапляння у природні водойми стічних вод уранових родовищ, підприємств зі збагачення урану, виробництв мінеральних добрив, а також порушенням озонового шару.

Єдиним газоподібним продуктом розпаду представників трьох родин природних радіоактивних елементів є радон – інертний газ без кольору і запаху, майже у 10 разів важчий за повітря, добре розчинний у воді.

Внесок радону в загальну дозу опромінення людини від природніх джерел становить 30–50%. Основним медико-біологічним наслідком опромінення радоном і його дочірніми продуктами розпаду (ДПР) є рак легенів.

Основну частину дози опромінення від радону людина отримує, знаходячись у закритому приміщенні, яке не провітрюється. В зонах з помірним кліматом концентрація радону в закритих приміщеннях в середньому у 8 разів вища, ніж у зовнішньому середовищі.

В атмосферу приміщень радон надходить такими шляхами:

- проникненням з ґрунтів крізь фундамент і перекриття підвальних приміщень будинку. Тому перед початком будівництва будь-яких об'єктів потрібно виміряти активність радону в ґрунті і повітрі, а також врахувати швидкість надходження радону з ґрунту в житлові приміщення. Важливим фактором впливу на концентрацію радону є конструкція будинку - чим більший "контакт" будинку із ґрунтом, тим вищий рівень радону;

- за рахунок ексхаляції (виділення) з матеріалів конструкції будинку. Будинки, збудовані з порівняно слаборадіоактивних (за гамма-випромінюванням) матеріалів, можуть бути вкрай небезпечними за рахунок високого виділення радону з будівельних матеріалів;

- з водопровідною водою і природним газом. Радон добре розчиняється у воді і міститься у всіх природних водах. Причому в глибинних ґрунтових водах його вміст, як правило, більший, ніж у поверхневих водостоках і водоймах. Наприклад, у підземних водах концентрація радону може змінюватися від 4–5 Бк/л до 3–4 МБк/л, тобто в мільйон разів. У водах озер і рік концентрація радону не перевищує 0,5 Бк/л, а у водах морів і океанів – не перевищує 0,05 Бк/л. Одним з найрезультативніших методів боротьби з радоном, розчиненим у воді, є аерація води. Процес аерації є одним з етапів підготовки води на міських водоочищувальних станціях. Нормами радіаційної безпеки України (НРБУ-97) встановлено гігієнічні нормативи на вміст радону у воді джерел питного й господарського призначення ≤100 Бк/кг.

Значно більшу небезпеку становить надходження парів води з високим вмістом радону у легені разом з повітрям, що вдихається. Це найчастіше відбувається у ванній кімнаті. Концентрація радону у ванній кімнаті в ~3 рази вища, ніж у житлових кімнатах.

Крім того, рівень концентрації радону і ДПР в атмосфері будинків істотно залежить відповітрообміну з атмосферним повітрям– від природної і штучної вентиляції приміщення, старанності шпаклювання вікон, стиків стін

Нормування забруднень.Згідно з законом незліквідованості відходів, або законом побічних впливів виробництва, для будь-якого господарського циклу характерним є утворення відходів. Основним напрямом охорони довкілля є нормування кількості викидів, стоків та відходів і контроль за ними. В основі нормування лежить встановлення гранично допустимих концентрацій (ГДК) шкідливих речовин (полютантів) в атмосферному повітрі, воді й ґрунті та харчових продук­тах. ГДК полютанта – це такий його максимальний вміст у природному середовищі (воді, повітрі, ґрунті) або продукті, який не знижує працездатності та самопочуття лю­дини, не шкодить її здоров'ю в разі постійного контакту, а також не ви­кликає небажаних (негативних) наслідків у нащадків.

Для визначення ГДК використовують високочутливі тести, пов'язані зі зміною світлової чутливості ока, потенціалів мозку. Вони дають змогу виявити мінімальні впливи токсичних речовин на організм людини навіть у разі короткочасної їх дії. Для виявлення тривалого впливу токсич­них речовин проводять лабораторні дослідження на тваринах у спеціаль­но обладнаних камерах із застосуванням різних тестів.

ГДК виражають у міліграмах на метр кубічний (мг/м3) – у повітрі, на дециметр кубічний (мг/дм3) – у воді та в міліграмах на кілограм (мг/кг) – у ґрунті та продуктах харчування.

Для кожного типу середовища встановлюються різні види ГДК:

- для повітряного середовища: ГДКр.з (ГДК робочої зони, за яку вважають простір заввишки до 2 м над підлогою, де знаходяться робітники (рівень вдихання)), ГДКм.р (ГДК максимальна разова: при вдиханні впродовж 20 хв не повинна спричиню­вати негативних наслідків в організмі людини), ГДКс.д (ГДК середньодобова – вміст забрудника, який не повинен негативно впливати в разі необмежено тривалого (впродовж років) вдихання);

- для водного середовища: ГДКв (для водойм господарсько-питного і побутового призначення), ГДКв.р. (для водойм рибогосподарського водокористування);

- для ґрунту: ГДКгр (для орного шару ґрунту) – не повинна негативно впливати не тільки на здоров'я людини, а й на самоочисну здатність ґрунту.

- для продуктів харчування: ГДКпр.

У разі наявності в повітрі кількох домішок їхню су­марну дію визначають за формулою:

С, /ГДКІ + С2/ГДК2 + ... + Сп /ГДК < 1,

де С1, С2 , ..., Сп -- концентрації забрудників, мг/м3; ГДКІ, ГДК2, ..., ГДКn – ГДК забрудників, мг/м3.

 

 

Лекція № 5.Методи боротьби зі забрудненнями атмосфери.

Види забруднювачів і джерела забруднення атмосфери.

Заходи для запобігання забруднення повітря шкідливими викидами. Класифікація і характеристика методів очищення викидів в атмосферу.

Види забруднювачів і джерела забруднення атмосфери. В атмосфері завжди присутні домішки, які потрапляють туди з природних чи антропогенних джерел. До природних атмосферних забрудників належить пил рослинного, тваринного, вулканічного та космічного походження, мікроорганізми, туман, дим лісових та степових пожеж тощо. Рівень забруднення атмосфери є фоновим і мало змінюється упродовж часу. Антропогені забруднювачі характеризуються більшою кількістю видів та масштабами: аерозолі сполук важких металів; синтетичні сполуки, які не існують в природі; радіоактивні; канцерогенні; бактеріологічні та інші речовини. На сьогодні налічується понад 500 видів забруднювачів атмосфери і їх кількість збільшується.

Різні джерела забруднення атмосфери наведено у табл. 5.1.

Таблиця 5.1

Види забруднювачів і джерела забруднення атмосфери

Основними джерелами забруднення атмосфери в Україні є важка промисловість (30%), автотранспорт (40%), теплоенергетика (30%). Заходи для запобігання забруднення повітря шкідливими викидами. Для… - створення санітарно-захисних зон (СЗЗ) між промисловими підприємствами та житловою забудовою. Розміри СЗЗ…

ОСНОВИ ЕКОЛОГІЇ

КОНСПЕКТ ЛЕКЦІЙ

для студентів базових напрямів

6.060101 «Будівництво», 6.170203 «Пожежна безпека»

 

Редактор  
Комп’ютерне верстання  

 

– Конец работы –

Используемые теги: основи, екології0.054

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ОСНОВИ ЕКОЛОГІЇ

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Опорний конспект лекцій з курсу Основи екології Тема 1. Предмет, історія, структура та методи екології 1. Предмет, об’єкт і завдання екології 2. Історія розвитку екології як науки
Кафедра екології харчових продуктів та виробництв... Опорний конспект лекцій... з курсу Основи екології...

Основы планирования. Теоретические основы управления проектами. Основы планирования. Планирование проекта в MS Project 7
Использованная литература В В Богданов Управление проектами в Microsoft Project Учебный курс Санкт Петербург Питер г...

Экономические основы технологического развития тема “ Основы технологического и экономического развития”
Особенностью современного развития технологий является переход к целостным технолого-экономическим системам высокой эффективности, охватывающим… В практической деятельности экономиста и финансиста технология является… Именно за счет прибыли, полученной от своевременно и разумно вложенных в технологию средств, и достигается…

ОСНОВИ ЕКОЛОГІЇ
Білявський Г О та ін... Б Основи екології Підручник Г О Білявський Р С Фур дуй І Ю... Підручник підготовлено з урахуванням положень Концепції еколо гічної освіти України й вимог та рекомендацій...

Ведение в курс "Основы экономической теории" (Введення в курс "Основи економiчної теорiї)
В працях Ксенофонта 430 355 рр. до н. е Платона 427 347 рр. .о н. Аристотеля 384 322 рр. до н. е а також мислителв стародавнього Риму, нд, Китаю… Але не кожна економчна думка розвиваться у систему поглядв ста економчним… Н в рабовласницькому, н у феодальному суспльств ще не снувало струнко системи економчних поглядв на економчн процеси.…

ОСНОВИ ЕКОЛОГІЇ
Державний вищий навчальний заклад... Харківський коледж текстилю та дизайну...

Модуль 1. ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВЫ ПРЕДСТАВЛЕНИЙ ОБ ОКРУЖАЮЩЕЙ ДЕЙСТВИТЕЛЬНОСТИ Тема 1. Основы концепций представления детерминированной физической картины мира
Модуль ЕСТЕСТВЕННОНАУЧНЫЕ ОСНОВЫ ПРЕДСТАВЛЕНИЙ ОБ ОКРУЖАЮЩЕЙ ДЕЙСТВИТЕЛЬНОСТИ... Тема Основы концепций представления детерминированной физической картины... Из наблюдений установлять теорию через теорию исправлять наблюдения есть лучший способ к изысканию правды...

ОСНОВИ ЕКОЛОГІЇ
МИКОЛАЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ... Мені В О СУХОМЛИНСЬКОГО... А О Руденко...

ОСНОВИ ЕКОЛОГІЇ
ХАрківський державний університет... Харчування та торгівлі... Кафедра товарознавства управління якістю та екологічної безпеки...

Функциональные основы проектирования: антропометрия, эргономика и технология процессов, как основа назначения основных габаритов здания
Семестр... специальности Промышленное и гражданское строительство... Городское строительство и хозяйство Лекция Функциональные основы...

0.039
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам