Способы зарядки минеральных частиц

 

Зарядка (электризация) частиц – важнейшая стадия электрической сепарации. Она может осуществляться путем создания на частицах избыточных зарядов какого-либо одного знака, либо создания на противоположных концах частицы зарядов разного знака. Существует несколько способов зарядки частиц.

 

2.2.1 Зарядка касанием об электрод

При соприкосновении проводниковой частицы (П) с электродом, находящимся под электрическим потенциалом, происходит перераспределение зарядов, в результате которого частица приобретает избыточный одноименный с электродом заряд. Это сопровождается появлением электрических кулоновских сил отталкивания (рис. 2.2).

Частица непроводника (НП) поляризуется и притягивается к нижнему электроду.

Скорость зарядки (или разрядки) частиц зависит от их электрической проводимости, формы, контактного сопротивления, напряженности поля и пр.

Для проводника, имеющего форму шарика с радиусом "r", касающегося электрода в постоянном электрическом поле с напряженностью "Е" предельная величина заряда равна:

 

(2.1)

2.2.2 Зарядка частиц ионизацией

 

Сущность метода заключается в осаждении на поверхность частиц ионов газа, полученных одним из способов – коронный разряд, рентгеновское, радиоактивное воздействие.

Наиболее распространенный источник получения ионов – коронный разряд. Сущность ионизации газа состоит в отщеплении электронов от нейтральных молекул и в присоединении некоторой части свободных электронов к нейтральным молекулам и атомам газа. Таким образом, носителями электрических зарядов в ионизированном газе являются ионы различных знаков и свободные электроны.

Коронный разряд – это неполный пробой газа между электродами, возникающий вблизи тонкого или заостренного электрода. В результате частичного пробоя ионизируются молекулы воздуха. Под влиянием электрического поля мощный поток газообразных ионов движется от коронирующего электрода к заземленному (осадительному) электроду. Возникающее в этом случае свечение газа – результат возбуждения нейтральных молекул, с которыми сталкиваются электроны или ионы.

Электрод, вблизи которого возникает свечение газа, называется коронирующим, а светящаяся область – коронирующим слоем или чехлом короны. Коронирующий слой образует внутреннюю область коронного разряда. Во внешней области ионизация газа не происходит, имеет место лишь перемещение в определенном направлении молекул газа под действием движущихся ионов. Эти ионы образуют "электронный ветер", он выравнивает концентрацию ионов в межэлектродном пространстве, способствуя лучшей зарядке частиц минерала.

Внешняя часть коронного разряда имеет только зарядоносители одного знака, т.к. коронирующий электрод поглощает ионы противоположного с ним знака, а избыточные одноименно заряженные ионы выталкиваются во внешнюю область короны и направляются к противоположному электроду. Следовательно, электрический ток при коронном разряде образуется зарядами того же знака, какой имеет коронирующий электрод.

Различают положительную и отрицательную корону, что определяется знаком потенциала коронирующего электрода.

+ -
Напряженность электрического поля и напряжение на электроде, при которых происходит коронный разряд в газе, называют критической напряженностью и критическим напряжением.

 

 

Напряжение, при котором наблюдается возникновение искр, называют напряжением искрового пробоя, а при котором возникает электрическая дуга – напряжением пробоя.

В поле коронного разряда возможна зарядка частиц, как находящихся во взвешенном состоянии в воздушном потоке, так и расположенных на электроде. На рис. 2.3 (схема слева) показан заряд частиц, находящихся в воздушном потоке, отрицательными ионами. Здесь верхний электрод называется коронирующим, нижний – осадительным.

Максимальный заряд, который может получить частица сферической форма с радиусом "r" в воздушной среде оценивается формулой Потенье:

, (2.2)

где εо – электрическая постоянная;

ε – диэлектрическая проницаемость частицы;

Е – напряженность электрического поля.

При контакте с заряженным электродом (схема справа) проводниковые частицы отдают полученный заряд, приобретая положительный заряд, а непроводники – нет. Скорость разряда частиц при касании об электрод определяется их проводимостью, контактным сопротивлением. За счет различной кинетики разряда частиц возникает разница в остаточной зарядки П- и НП-частиц.

Это явление сопровождается появлением сил отталкивания для частиц первого рода (П) и притяжения – для частиц второй группы (НП).

Рассмотренный способ ионизации частиц в коронном разряде с последующим контактом с электродом – основной метод зарядки разделяемых частиц при электрической сепарации по электропроводности.

 

2.2.3 Зарядка частиц трением

 

Метод основан на трибоэлектрическом эффекте, свойственном многим минералам. Иногда называется методом контактной электризации.

Сущность трибоэлектрического эффекта – возникновение зарядов на частицах минералов при прерывании механического контакта между ними, либо при трении частиц между собой. Другими словами, если электрически нейтральную частицу минерала привести в соприкосновение с электрически нейтральной частицей другого минерала или с поверхностью какого-либо материала и затем разъединить их, то на обоих соприкасающихся веществах возникнут различные по знаку электрические заряды. При многократном повторении рассмотренного элементарного акта удается создать плотность поверхностного заряда, достаточную для сепарации минералов в электрическом поле высокой напряженности.

Реализация данного метода зарядки частиц возможна двумя способами:

1. Контакт всех разделяемых минералов с электризатором, обычно вибрационным лотком, обеспечивающего многократное соприкосновение частиц с его поверхностью в процессе их перемещения.

2. Контакт разделяемых частиц между собой при перемешивании их во вращающемся барабане, обеспечивающим интенсивное соударение минералов.