рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

ВЫБОР ПРЕДОХРАНИТЕЛЕЙ

ВЫБОР ПРЕДОХРАНИТЕЛЕЙ - раздел Философия, ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ А) Выбор По Условиям Длительной Эксплуатации И Пус­ка.В Проц...

а) Выбор по условиям длительной эксплуатации и пус­ка.В процессе длительной эксплуатации температура на­грева предохранителя не должна превосходить допустимых значений. В этом случае обеспечивается стабильность времятоковых характеристик предохранителя. Для выполнения этого требования необходимо, чтобы патрон и плавкая вставка выбирались на номинальный ток, равный или не­сколько больший номинального тока защищаемой уста­новки.

Предохранитель не должен отключать установку при перегрузках, которые являются эксплуатационными. Так, пусковой ток асинхронного двигателя с короткозамкнутым ротором может достигать 7 Iном. По мере разгона пусковой ток падает до значения, равного номинальному току дви­гателя. Длительность пуска зависит от характера нагрузки. Например, для привода металлорежущих станков с относи­тельно небольшой инерцией механизма время разгона дви­гателя составляет 1 с. Процесс разгона центрифуги проис­ходит значительно медленней из-за большой инерции меха­низма, и длительность пуска может достигать 10 с и более. Предохранитель должен не перегорать при воздействии пусковых токов, а в плавких вставках не должно происхо­дить старения под действием этих токов. Эксперименталь­но установлено, что старение плавкой вставки не происхо­дит при токах, равных половине тока плавления. Согласно рис. 11.6 вставка предохранителя ПН-2 при времени 1 с плавится при токе, равном 5 Iном. . Вследствие производст­венных допусков времятоковая характеристика имеет раз­брос (штриховые кривые). Если пуск длится 1 с, то сред­нее значение пускового тока за этот период должно быть не более 0,5 тока плавления вставки за это же время. Та­ким образом, пусковой ток Iп связан с током вставки соот­ношением Iп =0,5 Iпл = 0,5-5 Iв.ном, и, следовательно, Iв.ном =0,4 Iп , т.е. номинальный ток вставки выбирается по пусковому то­ку нагрузки.

Для тяжелых условий пуска, когда двигатель медленно разворачивается (привод центрифуги), или в повторно кратковременном режиме, когда пуски происходят с боль­шой частотой, вставки выбирают с еще большим запасом:

Iв.ном =(0,5–0,6) Iп.

Если предохранитель стоит в линии, питающей несколько двигателей, плавкую вставку рекомен­дуется выбирать по формуле

где IР — расчетный номинальный ток линии, равныйНОМ. ДВ. Разность Iп - Iном.дв берется для двигателя, у которого она наибольшая.

Для двигателя с фазным ротором, если Iп 2Iном.дв плавкую вставку можно выбирать по условию

Для двигателей, работающих в повторно-крат­ковременном режиме, за номинальный принимается ток в режиме ПВ = 25%.

Наряду с проверкой вставки по условиям пуска или кратковременной перегрузки необходимо проводить про­верку по условиям К.З. При время перегорания вставки не превышает 0,15—0,2 с, и на этом вре­мени мало сказывается разброс характеристик вставок. При таком времени сваривание контактов контактора или магнитного пускателя маловероятно. Однако это требова­ние часто не удается соблюсти, так как кратность Iк/ Iв.ном определяется мощностью питающего трансформатора и со­противлением токопроводящих проводов и кабелей. Допус­кается применение предохранителей при кратностях.При такой кратности время отключения может достигать 15 с, что создает опасность для обслужи­вающего персонала, так как при этой кратности напряже­ние прикосновения может оказаться опасно большим. При такой низкой кратности Iк/Iв.ном нагрев провода при не­больших перегрузках (1,6—2) может быть очень большим и может приводить к выгоранию изоляции. Поэтому установка плавких вставок с большим запасом может допускаться только в крайних случаях, когда выгорание изо­ляции проводников не грозит пожаром (провода уложены в стальных трубах и имеют огнестойкую изоляцию).

В заключение следует указать, что номинальное напря­жение предохранителя Uном.пр должно быть равно номи­нальному напряжению сети Uном.с.

 
 

 


Рис. 11.6. Времятоковая характеристика предохранителя ПН-2

 

ВЫСОКОВОЛЬТНЫЕ ПРЕДОХРАНИТЕЛИ

а) Назначение, предъявляемые требования.При напря­жении выше 3 кВ и частоте 50 Гц применяются высоко­вольтные предохранители. Процесс нагрева плавкой встав­ки в высоковольтных предохранителях протекает так же, как ив предохранителях низкого напряжения.

В отношении времени плавления к высоковольтным пре­дохранителям предъявляется следующее общее требование: длительность плавления вставки должна быть менее 2 ч при токе перегрузки, равном 2 Iном., и более 1 ч при токе пере­грузки, равном 1,3 Iном..

Высоковольтные предохранители часто применяются для защиты трансформаторов напряжения от КЗ. Ток, текущий через предохранитель в номинальном режиме, не превышает доли ампера. В таких предохранителях время плавления вставки равно 1 мин при токе 1,25—2,5 А.

В связи с высоким значением восстанавливающегося на­пряжения процесс гашения дуги усложняется. В связи с этим изменяются габаритные размеры иконструкция вы­соковольтных предохранителей. Наибольшее распростране­ние получили предохранители с мелкозернистым наполните­лем истреляющего типа.

б) Предохранители с мелкозернистым наполнителем. Размер зерен и материал такие же, как и в низковольтных предохранителях. Длина плавкой вставки, м, таких предохранителей может быть определена по эмпирической формуле

где Uном. — номинальное напряжение предохранителя, кВ.

Для эффективного гашения дуги плавкая вставка берется малого диаметра.

Предохранители типа ПК на напряжение 6—10 кВ (рис. 16.12, а) содержат фарфоровый цилиндр /, армированный по торцам латунными колпаками 2. Наполнитель 7 в виде песка засыпается через отверстие в колпаке, которое после засыпки запаивается крышкой 3. В предохра­нителях на ток до 7,5 А медная плавкая вставка 5 наматывается на керамический рифленый каркасе. Это позволяет увеличить длину плав­кой вставки и эффект токоограничения, а следовательно, повысить от­ключаемый ток. Однако при перегрузках, меньших 3 Rиом, возможно образование токопроводящего канала из материала каркаса и распла­вившейся вставки. В результате наступает тепловое разрушение предо­хранителя. Поэтому предохранители с каркасом следует применять толь­ко для защиты от КЗ.

При номинальных токах, превышающих 7,5 А, плавкая вставка вы­полняется в виде параллельных спиралей (рис. 11.7,а). Применение параллельных вставок позволяет увеличить номинальный ток до 100 А при Uном.=3 кВ. При напряжении 10 кВ номинальный ток предохрани­теля равен 50 А. При токе 200 А приходится устанавливать четыре параллельных предохранителя. Применение параллельных вставок по­зволяет изготавливать их из медной или серебряной проволоки малого диаметра и сохранять эффект узкой щели в процессе дугогашения. Для снижения температуры предохранителя при небольших длительных пе­регрузках плавкие вставки имеют оловянные шарики 6.

Предохранитель имеет указатель срабатывания 9. На указатель 9 действует пружина, которая удерживается во втянутом состоянии спе­циальной плавкой вставкой 8. Эта вставка перегорает после перегора­ния основных вставок 5. При этом указатель освобождается и выбра­сывается в положение 9 с силой, определяемой пружиной. Этотуказатель можно использовать для автоматического отключения выклю­чателя нагрузки после отключения КЗ предохранителем. Указатель 9 может быть использован также в предохранителях с авто­матическим повторным включением. В этом случае срабатывание указа­теля в первом предохранителе ведет к параллельному подключению к нему другого предохранителя с исправной плавкой вставкой.

При КЗ плавкая вставка испаряется по всей длине и в цепь вводит­ся длинная дуга, горящая в уз­кой щели и имеющая высокое сопротивление, особенно в началь­ной стадии, когда пары металла
недостаточно ионизированы. Все это приводит к возникновению
больших перенапряжений — до 4,5 Uном на контактах предохранителя. Для ограничения пере­напряжений применяются встав­ки переменного сечения. Вначале сгорает участок меньшего сече­ния, а затем большего. В ре­зультате длина дуги растет мед­ленней.

 
 

 


Рис. 11.7. Предохранитель типа ПК

Предохранители с мелкозер­нистым наполнителем обладают
токоограничением, особенно при больших токах КЗ. В длительном
режиме интенсивное охлаждение тонких плавких вставок позволя­ет выполнять их с минимальным сечением и снизить ток плавления.
С ростом номинального тока эффект токоограничения падает. Но-
минальный ток отключения предохранителей достигает 20 кА при напряжении до 10 кВ. Предохранители серии ПКТН на напряжение до 35 кВ имеют вну­три керамический каркас с тонкой плавкой вставкой. Так как номиналь­ный ток вставок менее 1 А, то их сечение мало и токоограничивающий эффект особенно велик. Плавкая вставка выполняется из константановой проволоки с четырехступенчатым сечением для ограничения перена­пряжений. Плавление вставки происходит последовательно по ступеням. Предохранитель обеспечивает защиту высоковольтных шин от повреж­дения трансформатора напряжения при любой мощности источника пи­тания (ток ограничивается предохранителем).

Предохранители серий ПК и ПКТН работают бесшумно, без выбро­са пламени и раскаленных газов.

Для нормальной работы предохранителей особо важное значение имеет герметизация. При проникновении влаги в предохранитель он те­ряет свойство дугогашения. Поэтому места пайки и цементирующая замазка, крепящая колпачки, окрашиваются специальной влагозащитной эмалью. Перезарядка предохранителя в эксплуатации не допускается.

Как правило, установки напряжением 35 кВ и выше работают на открытом воздухе и подвержены воздействию атмосферы. В этих усло­виях трудно обеспечить надежную работу предохранителя ПК из-за увлажнения наполнителя.

Перспективы дальнейшего развития предохранителей на напряжение выше 35 кВ осложняются технологическими трудностями изготовления и ростом их габаритов.

в) Стреляющие предохранители. Для работы на открытом воздухе при напряжении 10 и 35 кВ и отключаемом токе до 15 кА применяются так называемые стреляющие предохранители типов ПСН-10 и ПСН-35. На рис. 11.8 показан патрон предохранителя ПСН-35. В корпусе 1 установлены две винипластовые трубки 2 и 3, соединенные стальным патрубком 4. Плавкая вставка 5 присоединяется к токоведущему стерж­ню 6 и гибкому проводнику 7, соединенному с наконечником 8. Патрон, установленный на изоляторах, показан на рис. 11.9. Изоляторы1 кре­пятся к стальному цоколю 2. Цепь присоединяется к выводам 3 и 4. Вращающийся контакт 5 действует на наконечник 8 (рис. 11.8) и с по­мощью своей пружины стремится вытащить гибкий проводник 7 из трубки 3. При перегорании плавкой вставки образуется дуга, которая, соприкасаясь со стенками трубки, разлагает их, и образующийся газ поднимает давление в трубке. При вытягивании наконечника из трубки длина дуги увеличивается, давление возрастает. При больших токах мембрана 9 в патрубке 4 разрывается и дуга гасится поперечным дуть­ем. Если ток невелик, то дуга гасится продольным потоком газа, который вырывается из трубки после вы­броса гибкого контакта 7 из трубки. Длительность горения падает при уве­личении тока. При больших токах дуга гаснет за 0,04 с. При малых то­ках (800—1000 А) время горения возрастает до 0,3 с.

 
 

 


Рис. 11.8. Патрон стреляющего предохранителя типа ПСН-35

 
 

 

 


Рис. 11.9. Предохранитель типа ПСН-35

 

Процесс отключения сопровожда­ется сильным выбросом пламени, га­зов и стреляющим звуковым эффек­том. Поэтому стреляющие предохра­нители соседних фаз должны быть на значительном удалении друг от друга.

В процессе гашения дуга снача­ла имеет небольшую длину, а затем длина ее увеличивается по мере выброса гибкого проводника. Это ограничивает скорость роста сопро­тивления дугового промежутка и устраняет перенапряжения.

г) Выбор предохранителей.При определении номи­нального тока вставки необходимо исходить из условия максимальной длительной перегрузки.

Очень часто обмотка высшего напряжения трансформа­тора присоединяется через предохранитель. При подаче на­пряжения на трансформатор возникают пики намагничива­ющего тока, среднее значение амплитуды которых достига­ет 10 Iном., а длительность прохождения примерно равна 0,1 с. Выбранный по номинальному току предохранитель должен быть проверен на прохождение в течение 0,1 с на­чального намагничивающего тока.

В заключение необходимо проверить селективность ра­боты предохранителя с выключателями, установленными на стороне высокого и низкого напряжения.

При КЗ в самом трансформаторе время отключения предохранителя должно быть меньше, чем выдержка времени выключателя, установленного на стороне высокого напря­жения и ближайшего к предохранителю. При КЗ на сторо­не низкого напряжения предохранитель должен иметь вре­мя плавления больше, чем уставка защиты выключателей на стороне низкого напряжения. При выборе предохранителя необходимо соблюсти также соотношение

 

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ... САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: ВЫБОР ПРЕДОХРАНИТЕЛЕЙ

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дается краткая характеристика каждого издания с рекомендациями по использованию.
Классификация электрических аппаратовможет быть проведена по ряду признаков: назначению (основной вы­полняемой функции), области применения, принципу дей­ствия, роду тока, исполнен

ЭЛЕКТРОМАГНИТЫ ПОСТОЯННОГО ТОКА
Электромагнитными называются устройства, предназначен­ные для создания в определенном пространстве магнитного поля с помощью обмотки, обтекаемой электрическим током. В нейтральны

ХАРАКТЕРИСТИКИ НЕКОТОРЫХ МАГНИТНОМЯГКИХ МАТЕРИАЛОВ
  Для магнитных цепей электрических аппаратов применяются самые разнообразные магнитномягкие материалы, от правильного выбора которых во многом зависит качество конструкции электри­че

ПРОМЕЖУТКОВ
Для магнитных систем электрических аппаратов, когда учиты­ваются потоки рассеяния и полные потоки воздушного зазора, су­щественным является определение магнитных проводимостей воз­душных путей — пр

Для случая полюс — плоскость
Линии индукции, выходящие из боковых граней, занимают весь объем вокруг полюса и имеют сложную форму (рис.2.1). Поле в результате этого, как уже указывалось, получается не плоскопараллельным. В это

Б. Полюса цилиндрической формы
Для электрических аппаратов широко применяются магнитные системы с цилиндрическими полюсами. Опыт показывает, что боковая удельная проводимость между цилиндрическими полю­сами зависит от величины д

Полюс — плоскость по координате z
Для плоскопараллельного поля суммарный поток с правой половины торца полюса и грани в (рис.) можно опреде­лить как  

ПРОСТЫХ ОБЪЕМНЫХ ФИГУР ПОЛЯ
  Расчет проводимостей воздушного зазора методом суммирования простых объемных фигур поля, предложенный Ротерсом, на практике получил достаточно широкое распространение. Однако сущест

РАСЧЕТ МАГНИТНЫХ ПРОВОДИМОСТЕЙ ВОЗДУШНЫХ ПУТЕЙ ГРАФИЧЕСКИМ МЕТОДОМ
  Для практических целей широко используются магнитные цепи, у которых магнитная проводимость рассеяния на единицу длины сердечника непостоянна. Поле таких цепей неоднородно. Оно силь

ОБЩИЕ СВЕДЕНИЯ О МАГНИТНЫХ ЦЕПЯХ АППАРАТОВ
а) Магнитная цепь аппарата, основные законы. Электромагниты нашли в аппаратостроении широкое при­менение и как элемент привода аппаратов (контакторы, пускатели, реле, автоматы, вык

ПОСТОЯННОГО ТОКА
а.) Расчет потоков рассеивания и индуктивности ка­тушки без учета сопротивления стали. Для электромаг­нитов, у которых катушка располагается на стержне, поток рассеяния связ

МАГНИТНАЯ ЦЕПЬ ЭЛЕКТРОМАГНИТОВ ПЕРЕМЕННОГО ТОКА
Магнитные цепи на переменном токе обладают сле­дующими особенностями. 1. Ток в катушке электромагнита зависит главным образом от ее индуктивного сопротивления. 2. Магнитное сопрот

КАТУШКИ ЭЛЕКТРОМАГНИТОВ
  В результате расчета магнитной цепи определяется поток в катушке и ее н. с. Катушка должна быть рас­считана таким образом, чтобы, с одной стороны, обес­печить требуемую н. с, а с др

ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА
  При заданном потоке падение магнитного потенциала уменьшает­ся с уменьшением магнитного сопротивления. Так как сопротивление обратно пропорционально магнитной проницаемости материал

СИЛА ТЯГИ ЭЛЕКТРОМАГНИТОВ
а) Энергетический баланс электромагнита постоянно­го тока. Рассмотрим процесс возникновения магнитного поля в простейшем клапанном электромагните (рис. 4.1,а). После включения цепи напряжение источ

Динамика электромагнитов, время трогания и движения. Ускорение и замедление срабатывания
г) Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока. Для электромагнитов постоянного и переменного тока вели­чина силы может быть рассчита

ДИНАМИКА И ВРЕМЯ СРАБАТЫВАНИЯ ЭЛЕКТРОМАГНИТОВ
а) Время срабатывания. До сих пор мы рассматри­вали только статические характеристики электромагни­тов, когда в их обмотке проходит неизменный ток, при­чем якорь либо неподвижен, л

МАГНИТНЫЕ ЦЕПИ С ПОСТОЯННЫМИ МАГНИТАМИ
а) Общие сведения.Для создания постоянного маг­нитного поля в целом ряде электрических аппаратов ис­пользуются постоянные магниты, которые изготавлива­ются из магнитно-твер­дых мат

Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость.
ЭЛЕКТРОДИНАМИЧЕСКИЕ УСИЛИЯ В ЭЛЕМЕНТАХ АППАРАТОВ При коротком замыкании в сети через токоведущую часть ап­парата могут протекать токи, в десятки раз превышающие номи­нальные. Эти токи, вза

ЭЛЕКТРОДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ АППАРАТОВ
Электродинамические силы, возникающие в токоведущих ча­стях аппаратов, стремятся деформировать как сами проводники, так и изоляторы, с помощью которых эти проводники укреплены к заземленным частям

ИЗОЛИРОВАННЫЕ ПРОВОДНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА В НОРМАЛЬНОМ РЕЖИМЕ
Как показывают наблюдения, чем выше температура, воздейст­вию которой подвергаются изоляционные материалы, входящие в конструкции аппаратов, тем быстрее ухудшаются их механические и электрические к

ПРИ КОРОТКИХ ЗАМЫКАНИЯХ
Короткое замыкание в электроустановках сопровождается про­теканием по проводникам токов, значительно превышающих токи нормального рабочего режима. Так как длительность протекания токов короткого за

ПОНЯТИЕ О ВИДАХ ТЕПЛООБМЕНА
При наличии разницы температур в теле в нем происходит процесс выравнивания температур из-за потока тепла от мест с более высокой температурой к местам с более низкой температу­рой. По ана

ОТДАЧИ ТЕПЛА С НАРУЖНОЙ ПОВЕРХНОСТИ
ОКРУЖАЮЩЕЙ СРЕДЕ (ЖИДКОСТИ, ГАЗУ) В электротехнической практике весьма часто приходится рассчитывать превышение температуры наружной поверхности относительно температуры ж

ДЛЯ РАССМОТРЕНИЯ УСТАНАВЛИВАЮЩЕГОСЯ ПРОЦЕССА НАГРЕВА ТЕЛА ОТ ИСТОЧНИКОВ ТЕПЛА, РАСПОЛОЖЕННЫХ ВНУТРИ ТЕЛА
  Пусть внутри тела действует источник тепла постоянной мощ­ности Р. Введем следующие предположения: температура тела в любой момент времени одинакова во всех точках о

ОСНОВНОЙ ЗАКОН ТЕПЛОПРОВОДНОСТИ БИО - ФУРЬЕ
Основной закон теплопроводности математически описывается выражением (6.46)

ПЛОСКОСТЯМИ
Рассмотрим простейшие случаи, когда тепловой поток Ф и его плотность Ф0 не изменяются во времени (стационарное состояние) и в пространстве. Такой случай может иметь место при на

ПРОЦЕСС НАГРЕВА ПРИ КОРОТКОМ ЗАМЫКАНИИ. ПОНЯТИЕ 0 ТЕРМИЧЕСКОЙ УСТОЙЧИВОСТИ
Режим короткого замыкания в цепи большей частью является ава­рийным и его обычно ликвидируют за малые промежутки времени — секунды и доли секунды, однако, как ни мала длительность протека­ния токов

ЖИДКОМЕТАЛЛИЧЕСКИЕ КОНТАКТЫ
Наиболее характерные недостатки твердометаллических контактов следующие: 1.С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса конт

ОБЩИЕ СВЕДЕНИЯ
Большая группа электрических аппаратов представле­на коммутационными устройствами, с помощью которых замыкается и размыкается электрическая цепь. Электриче­ский разряд, возникающий при размыкании к

ФИЗИЧЕСКИЕ ОСОБЕННОСТИ ДУГ030Г0 РАЗРЯДА ПРИ ВЫСОКОЙ ПЛОТНОСТИ ГАЗОВОЙ СРЕДЫ
Явление прохождения электрического тока через газ, называемое газовым разрядом, может наблюдаться практически при любых значениях тока. На рис. 8.2 изображена вольтамперная характе­ристика последов

ГАШЕНИЕ ЭЛЕКТРИЧЕСКИХ ДУГ В ЦЕПЯХ ПОСТОЯННОГО ТОКА
  При размыкании контактов аппарата, находящегося в цепи пос­тоянного тока, возникает дуговой разряд. Для гашения возникающей дуги постоянного тока обычно стремятся повысить напряжени

УСЛОВИЯ ГАШЕНИЯ ДУГ ПЕРЕМЕННОГО ТОКА
  Дуга переменного тока обычно гасится легче, чем дуга постоянно­го тока. Чтобы погасить дугу постоянного тока, надо насильственно свести к нулю ток цепи путем непрерывного увеличения

А. Открытая дуга переменного тока при высоком напряжении источника
Открытая дуга переменного тока в моменты перехода тока через нуль сохраняет высокую проводимость, и поэтому в установках высокого напряжения гашение открытой дуги происходит не вслед­ствие перехода

Б. Дуга переменного тока в условиях активной деионизации
  Если столб дуги переменного тока подвергается интенсивной деионизации, то в этом случае механизм гашения дуги существенно меняется по сравнению с предыдущим (открытая дуга в цепи вы

В. Дуга переменного тока в условиях отключения цепей низкого напряжения
В установках низкого напряжения (до 1000 В) электрическое сопротивление столба дуги обычно бывает соизмеримым с сопротив­лением отключаемой цепи, а напряжение на дуге — с напряже­нием источн

ОБЩИЕ СВЕДЕНИЯ
Бесконтактными электроаппаратами называют устройства, предназначенные для включения, выключения или переключения (ком­мутации) электрических цепей без физического разрыва цепи. Осно

ДВУХПОЛУПЕРИОДНЫЕ СХЕМЫ МУС
Однополупериодная схема (рис. 10.6) практически не применяется из-за следующих недостатков: 1.Для ограничения наведенных в обмотке управления токов необходим балластный дроссель, наличие к

Статические параметры
а) Крутизна характеристики управления.Для МУС характерна зависимость выходного напряжения Up только от

ОБЩИЕ СВЕДЕНИЯ
  Предохранители — это электрические аппараты, предназначенные для зашиты электрических цепей от токовых перегрузок и токов КЗ. Основными элементами предохрани­теля являются плавкая в

НАГРЕВ ПЛАВКОЙ ВСТАВКИ ПРИ ДЛИТЕЛЬНОЙ НАГРУЗКЕ
Основной характеристикой предохранителя является времятоковая характеристика, представляющая собой зави­симость времени плавления вставки от протекающего тока. Для совершенной защиты желательно, чт

КОНСТРУКЦИЯ ПРЕДОХРАНИТЕЛЕЙ НИЗКОГО НАПРЯЖЕНИЯ
  а) Предохранители с гашением дуги в закрытом объеме. Предохранители на токи от 15 до 60 А имеют упрощенную конструкцию. Плавкая вставка 1 прижимается к латунной обойме 4

КОНТАКТНАЯ СИСТЕМА
Контакторы переменного то­ка выпускаются на токи от 100 до 630 А. Число главных контактов колеблется от одного до пяти. Это отражает­ся на конструкции всего аппарата в целом. Наиболее широко

ОБЩИЕ СВЕДЕНИЯ
  Реле – это электрический аппарат, в котором при плавном изменении входной (управляющей) величины происходит скачкообразное изменение выходной (управляемой) величины. Причём, хотя бы

Тепловое реле. Устройство, характеристики. Реле времени.
  1.ТЕПЛОВЫЕ РЕЛЕ.   Тепловые реле основаны на принципе изменения физических свойств тел при их нагревании электрическим током или другими источниками тепла. Он

ОБЩИЕ СВЕДЕНИЯ
В схемах защиты и автоматики часто требуется выдер­жка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в

Работу.
Принцип электромагнитного замедления рас­смотрен выше. Конструкция реле с таким замедлением типа РЭВ-800 (рис.14.11)содержит П-образный магнитопровод 1 и якорь 2 с немагнитн

ПОЛУПРОВОДНИКОВЫЕ РЕЛЕ
а) Общие сведения. Полупроводниковые реле в отноше­нии быстродействия, чувствительности, селективности и на­дежности превосходят электромагнитные. В ряде случаев полупроводниковые

Тиристорных элементов.

РЕГУЛИРУЮЩИЕ ПОЛУПРОВОДНИКОВЫЕ
УСТРОЙСТВА ПЕРЕМЕННОГО ТОКА (БКРПУ) а) Общие сведения.На основе тиристоров возможно осуществление следующих операций: 1) включение и отключение э

ТИРИСТОРНЫЙ ПУСКАТЕЛЬ
На рис. 16.4 показан один из вариантов схемы бесконтактного — тиристорного пускателя. Силовой блок Б1 содержит силовые тиристоры VS1—VS3 и диоды VD1—VD3, рассчита

ОБЩИЕ СВЕДЕНИЯ
Для регулирования частоты вращения, вращающего мо­мента на валу, для соединения и разъединения ведущего и ведомого валов применяются электрические аппараты в виде муфт с электрическим управлением.

ЭЛЕКТРОМАГНИТНЫЕ ФРИКЦИОННЫЕ МУФТЫ
а) Принципдействия. Простейшая конструкция элект­ромагнитной фрикционной муфты представлена на рис. 14.3. Постоянное напряжение подводится к щеткам, скользящим по контактным кольца

ЭЛЕКТРОМАГНИТНЫЕ ФЕРРОПОРОШКОВЫЕ МУФТЫ
В ферропорошковой муфте барабанного типа (рис. 17.5) ведущий вал 1 через немагнитные фланцы 2 соединен с ферромагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается э

ГИСТЕРЕЗИСНЫЕ МУФТЫ
Возможны два варианта исполнения гистерезисных муфт: в первом — магнитное поле индуктора создается об­моткой, во втором — постоянными магнитами. Недостатком первого варианта является наличие контак

Ограничители напряжения.
Назначение и классификация электрических аппаратов высокого напряжения Электрические аппараты высокого напряжения (АВН) исполь­зуются в электроэнергетических системах (объединенных и

ЗАКЛЮЧЕНИЕ
  Развитие науки и техники, научно-технические исследования предполагают развитие и совершенствование методов проектирования и расчета существующих, а также разработку новых электриче

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги