рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общие требования к изображению отрезка.

Общие требования к изображению отрезка. - Конспект Лекций, раздел Философия, Конспект лекций по дисциплине Компьютерная графика   · Концы Отрезка Должны Находиться В Заданных Точках; ...

 

· концы отрезка должны находиться в заданных точках;

· отрезки должны выглядеть прямыми,

· яркость вдоль отрезка должна быть постоянной и не зависеть от длины и наклона.

Ни одно из этих условий не может быть точно выполнено на растровом дисплее в силу того, что изображение строится из пикселов конечных размеров, а именно:

· концы отрезка в общем случае располагаются на пикселах, лишь наиболее близких к требуемым позициям и только в частных случаях координаты концов отрезка точно совпадают с координатами пикселов;

· отрезок аппроксимируется набором пикселов и лишь в частных случаях вертикальных, горизонтальных и отрезков под 45° они будут выглядеть прямыми, причем гладкими прямыми, без ступенек только для вертикальных и горизонтальных отрезков (рис. 2.2.1);

· яркость для различных отрезков и даже вдоль отрезка в общем случае различна, так как, например, расстояние между центрами пикселов для вертикального отрезка и отрезка под 45° различно (см. рис. 2.2.1).

Объективное улучшение аппроксимации достигается увеличением разрешения дисплея, но в силу существенных технологических проблем разрешение для растровых систем приемлемой скорости разрешение составляет порядка 1280×1024.

Субъективное улучшение аппроксимации основано на психофизиологических особенностях зрения и, в частности, может достигаться просто уменьшением размеров экрана. Другие способы субъективного улучшения качества аппроксимации основаны на различных программных ухищрениях по "размыванию" резких границ изображения.

 

2.3. Параметрический алгоритм рисования линии.

 

Необходимо провести линию из точки (x1, y1) в точку (x2, y2) с линейной интерполяцией по яркости. рис. 2.3.1

Рис. 2.3.1

Любую точку на этой линии можно представить в виде

; где , ][ – знак округления до целого.

N – длина линии в пикселях.

Можно проводить вычисления через приращение координат.

Значения приращений считаются в начале функции и не входят в цикл построения линии на экране, за счет чего повышается быстродействие.

Недостатки алгоритма:

· Необходимость работать с вещественными числами.

· В алгоритме есть операция деления, что значительно усложняет аппаратную организацию и увеличивает время работы алгоритма..

Достоинства алгоритма:

· Простота программной реализации.

· Простота реализации линейной интерполяции по яркости.

 

 


2.4. Алгоритм Брезенхема рисования линии.

 

В 1965 году Брезенхеймом был предложен простой целочисленный алгоритм для растрового построения отрезка. В алгоритме используется управляющая переменная di, которая на каждом шаге пропорциональна разности между s и t (см. рис.2.4.1). На рис.2.4.1 приведен i-ый шаг, когда пиксел Pi-1 уже найден как ближайший к реальному изображаемому отрезку, и теперь требуется определить, какой из пикселов должен быть установлен следующим: Ti или Si.

Если s<t, то Si ближе к отрезку и необходимо выбрать его; в противном случае ближе будет Ti. Другими словами, если s-t<0, то выбирается Si; в противном случае выбирается Ti.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций по дисциплине Компьютерная графика

Кафедра Вычислительной Техники... Конспект лекций по дисциплине Компьютерная графика...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие требования к изображению отрезка.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Алгоритмы растровой графики.
2.1. Растровые представления изображений. Цифровое изображение – набор точек (пикселей) изображения; каждая точка изображения характеризуется координатами x и y и ярко

Алгоритм отсечения по прямоугольной области
  Когда необходимо отсекать отрезок по границам поля вывода, отсечение происходит посл

Метод полутонов
  Сущность: каждый пиксель исходного изображения заменяется группой пикселей рис.2.8.2.

Алгоритм закраски областей, заданных списком вершин
(метод построчного сканирования)   Интерполяция яркости при закраске областей О линейной интерполяции яркости при закраски области можно гово

Алгоритм
1. Сформировать ТР и подготовить ТАР 2. Выбор первой координаты сканируемой строки: у = min {ymin}; 3. Если у = уmin, то перенос группы из ТР в ТАР.

Двумерные геометрические преобразования
Параллельный перенос   Параллельный перенос в плоском случае

Поворот вокруг фиксированной точки
    Р` = Р·М,

Трехмерные геометрические преобразования
  Далее при рассмотрении трехмерных преобразований, в основном, используется общепринятая в векторной алгебре правая система координат (рис. а). При этом, если смотреть со стороны пол

Композиция 3D изображений
P` = P·M; P = P`· М–1     Поворот вокруг произвольной оси, проходящей через начало координат:

Движение по рельефу
   

Движение над рельефом
  Надо учитывать, что при движении над рельефом наблюдатель приподнят на высоту h.  

Обработка h при непосредственном синтезе изображения.
1. Инициализируем поля V, H = 0. Очищаем поле V (например, делаем его черным). В H записыв

Процедурные текстуры
  Рассмотрим простой пример: есть домик с кирпичными стенами. Решить задачу описания грани домика достаточно сложно. Можно было бы описать стенку, но это тоже сложно, поэтому эту стен

Проективные текстуры
Рассмотрим общий случай, когда текстура проецируется на поверхность, которая затем проецируется на 2-х мерный экран. Мы проецируем проектором некое изображение на поверхность, а затем смотрим на не

Основные законы освещения
  1.2.Закон Ламберта (диффузного отражения)   Если есть некоторая поверхность и в некоторую точку этой поверхности, у которой есть нормаль

Рельефные текстуры.
  Рельефное текстурирование очень напоминает обычный процесс наложения текстуры на полигон. Только при обычном наложении текстуры мы работаем со цветом и изменяем его цветовое восприя

Синтез изображения с помощью Y-буфера.
Рассмотрим частный случай: Синтез каркасных изображений с удалением невидимых элементов этого

Синтез стереоизображений.
Методы наблюдения: 1) делим изображение на 2, одно для левого глаза другое для правого. Затем на экране синтезируются эти 2 изображения, в результате чего мы ви- дим стер

Представление пространственных форм.
  Пусть надо изобразить пространственную кривую:  

Поверхность может быть разбита на куски, каждый из которых будет описан
параметрическим би - кубическим уравнением. Отдельно идёт работа по X, по Y, по Z для представления поверхности.    

Итерационные способы вычисления полиномов.
Вычисление кубического уравнения для прямой:

Метод триангуляции Делоне.
Суть : Позволяет получать триангуляцию, все треугольники стремятся к правильной форме. В основе метода лежит круговой критерий: Если провести окружность вокруг 3-ч точек,

Представление рельефа с мультиразрешением.
Мультиразрешение –представление с различной степенью детализации.   Основная задача: Сортировка тачек по степени важности.  

Объекты.
В отличие от рельефа объект изображается с использованием одного разреше- ния. Как правило создаётся много моделей одного объекта.

Если к одной вершине присоединены несколько треугольников, то квадрик этой
вершины будет равен сумме всех квадриков прилегающих к этой вершине треу- гольников:

Механизм колабса ребра.
Цель: выбор ребра, от которого можно избавмться, но это избавление должно принести наименьшую ошибку. Рассмотрим пример:

Заключает в себе триангуляции всех уровней разрешения. Но выигрыш в её
применении, по сравнению с динамической триангуляцией, невелик.   Резюме: 1) Существуют: а) Рельеф: представляется с разным уровне

Z=-0.0828*R+0.0157*G+0.1786*B
  Y – яркостная компонента цветового восприятия.    

Вычитание цветов
 

Обработка изображений
  Обработка изображений – это деятельность над изображениями  

Амплитудные преобразования
  Координаты точек не меняются.

Частные случаи геометрических преобразований

Алгоритм ГП.
При осуществлении геометрических преобразований существует две схемы пересчета: 1. Схема прямого пересчета

Деформация изображения.
Имеется система , на вход которой подают изображение :   l =1….L ( пусть у нас l-текстовых точек).  

Кусочно – нелинейные АП
Результатом нелинейного преобразования является эквализация (выравнивание) гистограммы. В результате применения этого преобразования увеличивается контрастность, так как после линейных преобразован

Считаем среднее значение этих точек и в результирующем изображении в точку с координатами (x y) записываем исходную точку.
    1) Усреднённая маска (3*3) 2) Медианный фильтр (3*3) 3) 1. Вычисление среднего знач

Линейные преобразования
  F (n1, n2) – двумерная функция. Тогда F – её линейно

Обратное преобразование
  F(n1, n2) =

Частные случаи линейных преобразований
  1.) Разделимые линейные преобразования   A(n1, n2, m1, m2) = Ac(n1, m1) &#

Теорема Ферма-Эйлера –2
В кольце целых чисел по модулю Mвсегда найдутся числаa,Mтакие, что aN = 1 по mod M

Если n=2q , то число является простым
2n +1 = 2r +1 –числа Ферма. где r = 2q

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги