рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Нормы векторов и матриц.

Нормы векторов и матриц. - раздел Философия, Численные методы линейной алгебры Поскольку Численные Методы По Своей Природе Являются Приближенными (По Крайне...

Поскольку численные методы по своей природе являются приближенными (по крайней мере, ввиду наличия вычислительной погрешности, обусловленной приближенностью компьютерной арифметики), важное значение имеют оценки погрешности (разности векторов точного и приближенного решений). Для этих целей используются различные нормы линейного векторного пространства. Напомним, что нормой вектора называется произвольный линейный положительно определенный функционал (скалярная функция векторного аргумента), который для любого элемента векторного пространства удовлетворяет трем условиям, известным как аксиомы нормы:

1. положительная определенность;

2. , линейность при умножении на скаляр;

3. неравенство треугольника.

Векторные нормы, получившие наиболее широкое распространение в численном анализе:

– Евклидова норма (при соответствующем определении скалярного произведения);

– максимальная норма;

– энергетическая норма, порожденная положительно определенным самосопряженным оператором .

Аксиоматику матричной нормы, в отличие от нормы вектора, полезно пополнить дополнительным условием. Поскольку для матриц определена операция умножения, то естественным является требование

аксиома мультипликативности матричной нормы.

Аксиома мультипликативности матричной нормы тесно связана с требованием согласованности норм матриц и векторов. В частности, для мультипликативной нормы автоматически выполняется оценка (вектор в данном случае может трактоваться как матрица, имеющая размерность ). Для получения не улучшаемых оценок произведения матрицы на вектор используют нормы матриц, подчиненные соответствующим векторным нормам.

Определение.Норма матрицы , подчиненная векторной норме определяется числом

(1.1)

 

В случае квадратных матриц из определения подчиненной матричной нормы следует ее согласованность, мультипликативность и минимальность среди всех возможных согласованных норм. Подчиненные матричные нормы для приведенных выше основных векторных норм вычисляются следующим образом.

– матричная норма, подчиненная векторной Евклидовой норме, равна максимальному сингулярному числу матрицы. Сингулярные числа матрицы вычисляются как корень квадратный из собственных значений матрицы . Для симметричной, положительно определенной матрицы сингулярные числа совпадают со спектром собственных значений данной матрицы.

. В качестве данной нормы выступает максимальное значение сумм абсолютных величин элементов строк матрицы.

Выбор конкретной нормы для получения оценок приближенного решения определяется в основном целью исследований и спецификой задачи. При этом следует иметь в виду, что нормы конечномерного линейного векторного пространства эквивалентны с точностью до постоянного множителя. Например, для норм и имеют место оценки

. (1.2)

 

– Конец работы –

Эта тема принадлежит разделу:

Численные методы линейной алгебры

В М Волков... Численные методы линейной алгебры...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Нормы векторов и матриц.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы линейных алгебраических уравнений. Разрешимость и устойчивость.
  Решение системы линейных алгебраических уравнений для заданного вектора и квадратной матрицы

Метод Гаусса
  Большинство прямых методов решения систем ЛАУ в той или иной мере наследуют идею алгоритма последовательного исключения неизвестных – метода Гаусса. Идея достаточно прозрачна. Если

Метод Гаусса с выбором ведущего элемента
При перестановке строк системы ЛАУ решение задачи не изменяться. Данное свойство лежит в основе алгоритмов упорядочения строк матрицы, позволяющих обойти некоторые недостатки метода Гаусса и повыси

LU-факторизация.
Как было показано выше, основные вычислительные затраты в методе Гаусса связаны с приведением матрицы системы ЛАУ к треугольному виду (вычислительная сложность прямого хода метода Гаусса на

Разложение Холецкого (метод квадратного корня).
  В случае симметричной невырожденной матрицы есть возможность провести факторизацию более эффективно. В частности симметричную матрицу можно представить в виде произведения нижней тр

Число обусловленности матрицы и оценки погрешности решения систем линейных алгебраических уравнений.
Компьютерные вычисления являются приближенными в силу того, что действительные числа представляются конечным числом десятичных разрядов. Относительная погрешность представления действительных чисел

Свойства собственных значений и собственных векторов матриц.
Пусть дана квадратная невырожденная матрица порядка

Степенной метод.
  Пусть требуется найти максимальное по абсолютной величине собственное значение матрицы , причем извест

Метод вращений.
  Наиболее эффективный подход к проблеме собственных значений основан на использовании преобразований подобия, позволяющих привести исходную матрицу к треугольному, диагональному или

П.1. Реализация итерационного метода вращений для расчета собственных значений симметричной матрицы
  % Проблема собственных значений % Метод Вращений N=22; % Задание Размерности матрицы A=rand(N); %Формирование матрицы случайных значений A=A*A';

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги