Частотно-независимые антенны бегущей волны

Частотно-независимые антенны бегущей волны – это антенны, у которых коэффициент ХНА и входное сопротивление не выходит из заданных пределов в диапазоне частот

В основе построение частотно-независимых антенн лежат 3 принципа, главным из которых – принцип подобия. Он отражает известные свойства идеальной антенны сохранять свои характеристики и параметры, если при изменении длины волны пропорционально ей изменяются все линейные размеры антенны. Применение принципа подобия к антеннам бегущей волны означает создание такого направителя, в котором распространяется волна последовательно возбуждает излучающие элементы с увеличивающимися от точки возбуждения линейными размерами, при чем для каждой длины волны из заданного рабочего диапазона в направителе имеется некоторый резонансный интенсивно излучающий элемент. Часть направителя между возбудителем и этим резонансным элементом излучает слабо и играет роль линии, подводящей энергию к резонансному элементу. Остальная часть направителя за пределами резонансного элемента не играет существенную роль, так как амплитуда поля поверхностной волны на нем мала. Практически всю энергию излучает резонансный элемент.

 

 

1 – возбудитель

2 – экран

3 - направитель

Интенсивное спадание амплитуды поверхностной волны на резонансном элементе и соответствующего ей поверхностного тока на направителе представляет собой второй принцип, лежащий в основе построения частотно-независимых антенн и носит название – принцип отсечки тока. При увеличении λ резонансный участок перемещается вдоль оси конуса. Геометрия рассмотренных антенн бегущей волны характеризуется только углом при вершине конуса. Аналогично этому примеру в частотно-независимых антеннах независимо от конструкции направителя описывается только угловыми размерами, поэтому частотно-независимые антенны также называют эквиугольные. Практически вследствии ограничения длины направителя такие антенны близки по своим свойствам к частотно-независимым антеннам только в ограниченном диапазоне частот, в котором резонансный элемент направителя находится в пределах реальной длины направителя.

Практически также отлична от ν, что связано с тем, что минимальные размеры направителя больше нуля. Они ограничены диаметрами внутрешних и внешних проводников коаксиального волновода. При создании частотно-независимых антенн бегущей волны определенное значение имеет также принцип дополнительности, в основе которого лежит свойство перестановочной двойственности уравнений Максвелла. В соответствии с этим свойством входное сопротивление щелевой антенны в бесконечно плоском экране и входное сопротивление дополнительного вибратора связано между собой следующим соотношением:

 

Если в излучающей структуре щелевая часть совпадает по форме и размерам с вибраторной частью, то замена одной на другую не приведет к изменению входного сопротивления, так как не приводит к изменению в целом всей структуры. При расположении излучающей структуры в воздухе ( , ) и не зависит от частоты.

Излучающие структуры, в которых рассмотренные свойства реализованы называются самодополнительными.

Можно сформулировать следующие свойства создания ЧНА (Частотно-независимые антенны бегущей волны):

1) в антенне должно выполнятся условие автоматической отсечки излучающих токов (принцип отсечки токов);

2) форма антенны должна определятся в основном угловыми размерами;

3) форма щелевой части плоской антенны должна совпадать с формой вибраторной части.

Среди этих принципов первостепенное значение принадлежит принципу отсечки токов, второй и третий принципы имеют вспомогательные значения. Их нарушение в реальных конструкциях антенн необязательно приводит к заметному ухудшению частотных свойств.

В обще случаи ЧНА в сферической системе координат описывается функцией:

 

где – расстояние от начала координат до точки, образующей излучающую поверхность;

– коэффициент, зависящий только от угла ;

Как видно из формулы, ЧНА представляет собой пространственную или плоскую спираль. При выполнении условий:

 

ЧНА представляет собой коническую спираль.

При выполнении условий:

 

ЧНА представляет собой плоскую спираль.

Элементы спирали, имеющие координаты r, θ, φ; rn, θ, φ+2πn являются подобными и одинаково расположены.

Подставив данные координаты, получим:

 

Отсюда следует, что ЧНА – это периодическая по r структура с периодом 2πn, где В характеризует пространственный логарифмический период спирали.

 

где θ0 – угол между осью z и образующей конуса конической спирали;

α – угол между касательной к спирали и плоскость z.

Величина - коэффициент масштабного распределения структуры антенны.

Спиральные антенны симметричные. Их можно питать через двухпроводную симметричную линию или коаксиально несимметричную линию.

Плоская спиральная антенна излучает в обе стороны от плоскости спирали. Для обеспечения одностороннего излучения применяют конические спиральные антенны, у которых задний лепесток исчезает при θ0 < 10°.