рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Розклад вектора за базисом

Розклад вектора за базисом - раздел Философия, КОНСПЕКТ ЛЕКЦІЙ З КУРСУ ЛІНІЙНОЇ АЛГЕБРИ ТА АНАЛІТИЧНОЇ ГЕОМЕТРІЇ Нехай Дано Вектори ...

Нехай дано вектори .

Вектор

,

де – числа,

називається лінійною комбінацією векторів , а числа коефіцієнтами цієї комбінації.

Якщо вектор представлений у вигляді лінійної комбінації векторів , тобто , то кажуть, що вектор розкладений за векторами .

Базисом на площині назвемо два ненульових, неколінеарних вектори цієї площини, взятих в певному порядку.

Нехай на площині заданий базис . Доведемо, що будь-який вектор цієї площини можна єдиним чином розкласти за базисними векторами .

Розглянемо можливі випадки:

1) Вектор колінеарний одному з базисних векторів, наприклад, . Тоді за властивостями добутку вектора на число існує таке число , що або і такий розклад єдиний.

2) Вектор не колінеарний ні одному з базисних векторів. Зобразимо три вектори , , (рис. 5.5). Очевидно, що єдиним чином можна представити у вигляді , де і колінеарні відповідно векторам , а отже існують такі числа і , що , і

. (5.1)

Коефіцієнти і розкладу (5.1) називаються координатами вектора в базисі і записують (,).

Таким чином, кожному вектору на площині в заданому базисі відповідає єдина пара чисел, взятих в певному порядку, і навпаки, кожній парі чисел, взятих в певному порядку, відповідає в заданому базисі єдиний вектор на площині.

Базисом в просторі назвемо три некомпланарних вектори, взятих в певному порядку.

Нехай в просторі заданий базис . Доведемо, що будь-який вектор можна єдиним чином розкласти за базисними векторами .

Розглянемо можливі випадки:

1) Вектор і два базисних вектори, наприклад, компланарні. Як показано вище, або .

2) Вектор не компланарний з жодними двома з базисних векторів. Зобразимо вектори , , , (рис. 5.6). Очевидно, що єдиним чином можна представити у вигляді , де колінеарний , а компланарний з векторами . Тоді існують такі числа , , , що вектор єдиним чином можна представити у вигляді , а . Отже

. (5.2)

Коефіцієнти , , розкладу (5.2) називаються координатами вектора в базисі і записують (,,).

Таким чином, кожному вектору простору в заданому базисі відповідає єдина трійка чисел, взятих в певному порядку, і навпаки, кожній трійці чисел, взятих в певному порядку, відповідає в заданому базисі єдиний вектор.

Відмітимо, що всі координати нульового вектора рівні нулю. Якщо вектор , то .

Базис називається ортонормованим, якщо базисні вектори одиничні і попарно ортогональні.

 

– Конец работы –

Эта тема принадлежит разделу:

КОНСПЕКТ ЛЕКЦІЙ З КУРСУ ЛІНІЙНОЇ АЛГЕБРИ ТА АНАЛІТИЧНОЇ ГЕОМЕТРІЇ

КІРОВОГРАДСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... ФАКУЛЬТЕТ ПРОЕКТУВАННЯ І ЕКСПЛУАТАЦІЇ МАШИН... КАФЕДРА ВИЩОЇ МАТЕМАТИКИ ТА ФІЗИКИ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Розклад вектора за базисом

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КОНСПЕКТ ЛЕКЦІЙ З КУРСУ ЛІНІЙНОЇ АЛГЕБРИ ТА АНАЛІТИЧНОЇ ГЕОМЕТРІЇ
КРЕДИТНО-МОДУЛЬНА СИСТЕМА Методичні вказівки для студентів технічних спеціальностей   КІРОВОГРАД   Конспект лекцій з курсу лінійної ал

Організація навчального процесу за кредитно-модульною системою
ЛІНІЙНА АЛГЕБРА ТА АНАЛІТИЧНА ГЕОМЕТРІЯ   Модуль І. Матриці. Визначники. Системи лінійних рівнянь. № тижня Теми

Основні поняття
Матрицею (числовою матрицею) називається прямокутна таблиця складена з чи

Дії над матрицями
Додавання. Дія додавання матриць вводиться тільки для матриць однакових розмірів. Сумою двох матриць

Транспонування матриць
Матриця, отримана з даної заміною кожного її рядка (стовпчика) стовпчиком (рядком) з тим же номером, називається транспонованою до даної. Матрицю, транспоновану до

Основні поняття
Квадратній матриці А порядку п можна поставити у відповідність число, яке називається її визначником або детермінантом і познача

Властивості визначників
Сформулюємо основні властивості визначників, які справедливі для визначників всіх порядків. Деякі з них пояснимо на визначниках 3-го порядку. 1.Визначник матриці, транс

Основні поняття
Нехай – квадратна матриця

Обернена матриця
Матриця називається оберненоюдо матриці

Ранг матриці
Розглянемо матрицю розмірів

Основні поняття
Системою т лінійних алгебраїчних рівнянь з п невідомими називається система вигляду

Розв’язання невироджених лінійних систем
Нехай дана система п лінійних рівнянь з п невідомими: (4.3) або в ма

Правило розв’язання довільних лінійних систем.
1. Знайти ранги основної і розширеної матриць системи. Якщо , то система несумісна. 2. Якщо

Розв’язання лінійних систем методом Гауса
Універсальним методом розв’язання систем лінійних алгебраїчних рівнянь є метод Гауса, який полягає в послідовному виключенні змінних. Нехай дана система т лінійних рівнянь з п

Основні поняття
Вектор – це направлений відрізок, тобто відрізок, який має певну довжину і певний напрямок. Якщо А – початок вектора, а В – його кінець, то вектор позначають

Лінійні операції над векторами
Лінійними операціями над векторами називають додавання і множення векторів на число. Нехай

Лінійні операції над векторами в координатній формі
Нехай заданий базис і вектори

Декартова прямокутна система координат
Нехай в просторі дано точку О і ортонормований базис, який позначатимемо . Сукупніст

Поділ відрізка в даному відношенні
Розділити відрізок у відношенні

Скалярний добуток векторів
Означення скалярного добутку. Скалярним добутком двох ненульових векторів

Властивості скалярного добутку.
1. . Справедливість цієї властивості випливає з означення. 2.

Векторний добуток векторів
Означення векторного добутку. Векторним добутком двох неколінеарних векторів

Властивості векторного добутку.
1.

Мішаний добуток векторів
Означення мішаного добутку. Мішаним добутком трьох векторів ,

Властивості мішаного добутку.
1. Мішаний добуток не змінюється при циклічній перестановці його множників: . Дійсно, в цьо

Рівняння лінії на площині
Лінія на площині часто задається як множина точок, що має деякі геометричні властивості, які характерні тільки для цієї множини. Введення на площині системи координат дозволяє визначити по

Рівняння поверхні та лінії в просторі
Рівнянням поверхні в заданій системі координат називаєт

Загальне рівняння площини
    Пол

Загальне рівняння прямої на площині
Положення прямої на площині

Канонічні і параметричні рівняння прямої. Рівняння прямої з кутовим коефіцієнтом
Канонічні і параметричні рівняння прямої. Положення прямої в просторі і системі коо

Загальні рівняння прямої в просторі
Нехай задані дві непаралельні площини і

Рівняння прямої, що проходить через дві точки
Нехай в системі координат задані дві точки

Рівняння площини, що проходить через три точки
Нехай в системі координат задані три точки

Кут між площинами, кут між прямими, кут між прямою і площиною
Кут між площинами.Нехай задані дві площини і

Відстань від точки до площини і від точки до прямої на площині
Відстань від точки до площини.Нехай в системі координат

Умова, при якій дві прямі лежать в одній площині
Нехай прямі і

Пряма на площині
8.1 Скласти рівняння прямої, що проходить через точку і: а) перпендикулярна до ве

Площина
8.6. Вказати особливості розташування площин відносно системи координат : 1)

Пряма в просторі. Пряма і площина
8.15. Дано чотири точки ,

Еліпс, гіпербола, парабола з осями, паралельними осям координат
Розглянемо еліпс з центром в точці з осями, паралельними осям координат (рис. 9.11). Перейд

ВІДПОВІДІ
1.1. а) 23, б)

Індивідуальні завдання
1. Знайти матрицю , де

Тестові завдання з лінійної алгебри
1. Яка з матриць є трикутною: a)

Тестові завдання з аналітичної геометрії
1. Вказати рівняння площини, що проходить через точку перпендикулярно до вектора

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги