рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Схемна реалізація логічних функцій на прикладі функцій “НЕ”, “І”, “АБО”, 3І–НЕ”, “3АБО–НЕ” та ін.

Схемна реалізація логічних функцій на прикладі функцій “НЕ”, “І”, “АБО”, 3І–НЕ”, “3АБО–НЕ” та ін. - раздел Философия, Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка   Розглянемо Схеми Деяких Логічних Елементів На Основі Іс, Що В...

 

Розглянемо схеми деяких логічних елементів на основі ІС, що виконують найпростіші логічні операції.

Рис. 1. Схема логічного елемента НЕ та її умовні позначення.

На рис. 1 представлені схема і умовні позначення інвертора, який реалізує логічну функцію НЕ (заперечення), тобто у= f(х) = . При відсутності на вході цієї схеми сигналу на виході її буде висока напруга, відповідна рівню логічної 1, оскільки в цьому випадку транзистор закритий, і, отже, його внутрішній опір великий. При подачі на вхід схеми напруги, відповідної рівню логічної 1, на виході її буде низьке напруга, відповідна рівню логічного 0, оскільки в цьому випадку транзистор відкритий і опір його малий. Логіка роботи схеми описується таблицею істинності, в якій відображуються значення сигналів на вході і відповідні ним значення сигналів на виході схеми. Таблиця істинності схеми НЕ має вид табл. 1.

Таблиця 1. Таблиця істинності схеми НЕ.

x y

Приклад комбінаційної схеми, що реалізує функцію 3І (кон’юнкцію) тобто y = f(x 1, x 2 , x 3 ) = x 1 Ù x2 Ù x3 , і її умовні позначення наведений на рис. 2. Тут і далі перший символ в позначенні схеми – 3І визначає кількість входів схеми (наприклад, 3І – схема «І» із трьома входами).

Рис. 2.Схема логічного елемента 3І та її умовні позначення.

Операція кон’юнкції в цій схемі здійснюється за допомогою діодів. Якщо на входи x 1 ¸ x3 схеми подати напругу, що відповідає логічній 1, то діоди VD1÷VD3 будуть закриті, струм через них проходити не буде і на виході схеми буде висока напруга, яка відповідає логічній 1. Якщо хоча б на одному з входів цієї схеми буде низька напруга, яка відповідає логічному 0, то струм від джерела живлення +U пройде через відкритий діод і напруга на виході цієї схеми буде відповідати логічному 0. Таблиця істинності схеми І має вид табл. 2.

 

Таблиця 2. Таблиця істинності схеми 3І.

x1 x2 x3 y

На рис. 3 наведена схема включення транзисторів в коло за схемою із спільним колектором. Це коло є повторювачем вхідного сигналу і застосовується в багатьох логічних схемах, здійснюючи операцію диз'юнкції вхідних сигналів (логічне додавання, операція АБО), тобто операцію y = f(x 1, x 2 , x 3 ) = x 1 Ú x2 Ú x3 . Наведені умовні позначення схеми 3АБО. Таблиця істинності цієї схеми має вид табл. 3.

Рис. 3. Схема логічного елемента 3АБО та її умовні позначення.

Таблиця 5. Таблиця істинності схеми 3АБО.

x1 x2 x3 y

На рис. 4 наведена схема 3ІНЕ і її умовні графічні позначення. Схема реалізує функцію y = f(x) = . Таблиця істинності схеми 3ІНЕ має вид табл. 4.

Рис. 4. Схема логічного елемента 3ІНЕ та її умовні позначення.

Таблиця 4. Таблиця істинності схеми 3ІНЕ.

x1 x2 x3 y

 

На рис. 5 наведена схема 3АБОНЕ і її умовні графічні позначення. Схема реалізує функцію y = f(x) = . В цій схемі транзистори включені в коло за схемою із спільним емітером. Таблиця істинності схеми 3АБОНЕ має вид табл. 5.

Рис. 5. Схема логічного елемента 3АБОНЕ та її умовні позначення.

Таблиця 5. Таблиця істинності схеми 3АБОНЕ.

х1 х2 х3 y

На рис. 6 наведена схема повторення і її умовні графічні позначення. Схема реалізує операцію повторення, тобто y = f(x) = х.

Рис. 6. Схема повторення і її умовне графічне позначення.

Таблиця 6. Таблиця істинності схеми повторення.

x y

 

Наведені схеми логічних елементів є представниками так званих схем діодно–транзисторної логіки (ДТЛ). Транзисторно–транзисторні елементи (ТТЛ) з’явились як результат розвитку схем ДТЛ завдяки заміні діодів багатоемітерним транзистором (БЕТ) – інтегральним елементом, який об’єднує властивості діодних логічних схем і транзисторного підсилювача. Відміна БЕТ від транзисторів в тому, що він має кілька незалежних один від одного емітерів і один колектор.

Розглянемо роботу БЕТ на прикладі схеми 4ІНЕ (рис. 7) з простим інвертором (однополярним ключем).


а) б)

 

 

Рис. 7. Розподіл струмів в багатоемітерному транзисторі в схемі 4ІНЕ:

а) – на вхід подана напруга, що відповідає рівню логічної 1; б) – на вхід подана напруга, що відповідає рівню логічного 0.

Якщо на всі входи БЕТ подана напруга, що відповідає рівню 1 (Uвх1), емітери вхідного транзистора не отримають відкриваючого струму зміщення. При цьому струм, поданий в базу БЕТ через резистор R1, тече від джерела +U в коло колектора, зміщеного в прямому напрямку (рис. 7-а), і далі в базу транзистора VT2. Транзистор VT2 при цьому знаходиться в режимі насичення і напруга на виході схеми відповідає рівню логічного 0 (Uвих0).

Якщо на один з входів БЕТ подана напруга, що відповідає рівню 0 (Uвх0), перехід база–емітер БЕТ зміщується в прямому напрямку (рис. 7-б). Струм, поданий в його базу через резистор R1, потече в коло цього емітера. При цьому струм колектора БЕТ зменшується, транзистор VT2 вимикається і напруга на виході схеми стає рівною рівню логічної 1 (Uвих1).

З розвитком вдосконалення технології базовим для схем ТТЛ–типу став ключ із складним інвертором – двополюсний ключ (рис. 8-а). Використання складного інвертора в порівнянні з простою схемою дозволило збільшити швидкодію, завадостійкість, навантажувальну здатність і знизити вимоги до параметрів транзисторів.

Промисловість випускала кілька різновидів серій елементів ТТЛ–типу (серії стандартні 133, К155, швидкодіючі з діодами Шоттки 530, К531, мікропотужні з діодами Шоттки 533, К555).


а) б)

Рис. 8. Схеми чотирьохвхідних логічних елементів ТТЛ–типу:

а) – ключ із складним інвертором (схема ІНЕ); б) – розширювач АБО.

 

Майже всі логічні елементи, що входять до складу вказаних серій, можуть бути утворені комбінуванням двох базових схем: логічного елемента ІНЕ і розширювачів АБО на різне число входів (рис. 8).

Розширювач АБО разом з логічним елементом 4ІНЕ утворюють логічний елемент 4І–2АБОНЕ (рис. 9).

Приєднуючи розширювач АБО (рис. 8-б) до точок 1, 2 (рис. 9) можна збільшувати число об’єднань по логічному входу АБО.

Для всіх схем ТТЛ–типу, що мають можливість розширення АБО, максимальне число об’єднань дорівнює 8.

До переваг ІС ТТЛ–типу можна віднести високий рівень схемно–технологічної відпрацьованості і, як наслідок, високий відсоток виходу придатних мікросхем і низьку їх вартість при виготовленні; хороші електричні параметри і характеристики, порівняно високу швидкодію при середній потужності споживання або середня швидкодія при малій потужності споживання; хороший чинник якості, тобто малий добуток часу затримки на потужність споживання; високу абсолютну та відносну завадостійкість; високі статичні і динамічні навантажувальні здатності; широкий функціональний набір елементів; зручність застосування (монтажу, компоновки, охолодження і т.д.), що забезпечує відносно прості інженерні методи конструювання на їх основі електронної апаратури.

Характеристики і параметри швидкодіючих ІС емітерно-зв’язаної логіки (ЕЗЛ) визначаються схемно–технічними, технологічними і конструктивними рішеннями елементів.

Розглянемо базовий логічний елемент ЕЗЛ–типу 2І/(2ІНЕ). Схема цього елементу складається з трьох кіл: струмового перемикача (СП), вихідних емітерних повторювачів (ЕП) і джерела опорних напруг (ДОН) (рис. 10).

Струмовий перемикач (СП), побудований на транзисторах VT1 ÷ VT3 і резисторах R1, R2, R6 ÷ R8, уявляє собою диференціальний підсилювач, що працює в ключовому режимі і має два або кілька входів. Він призначений для отримання першого ступеня логічної функції, підсилення вхідних сигналів за потужністю (в основному за струмом), формування парафазного (прямого та інверсного) вихідних сигналів та забезпечення необхідної завадозахищенності елемента.

 

Рис. 10. Логічний елемент 2І/2ІНЕ серії 500:

а) – схема елемента 2І/2ІНЕ; б) – умовне позначення елемента 2І/2ІНЕ.

Вихідні емітерні повторювачі (ЕП), що виконані на транзисторах VT5 та VT6, призначені для утворення другого ступеня логічної функції, підсилення вихідних сигналів за потужністю (за струмом), забезпечення заданої навантажувальної здатності при роботі на лінії зв’язку і зміщення рівнів сигналів за напругою для сумісності ІС за входом та виходом.

Джерело опорної напруги (ДОН), побудоване на транзисторі VT4, термокомпенсуючих діодах VD1, VD2 та резисторах R3 ÷ R5, призначене для забезпечення СП заданою опорною напругою, відносно якої здійснюється перемикання в ньому транзисторів.

Джерело опорної напруги забезпечує опорними напругами, як правило, кілька логічних елементів. В окремих випадках воно формує і інші опорні напруги, потрібні для схем ЕЗЛ–типу.

Базовий елемент ЕЗЛ–типу працює таким чином. Логічному 0 відповідає верхній рівень логічного сигналу (–0,9 В), логічній 1 – нижній рівень логічного сигналу (–1,7 В). Амплітуда логічного сигналу складає 0,8 В, опорна напруга дорівнює –1,3 В (середній рівень між верхнім і нижнім рівнем логічного сигналу).

При подачі на всі входи напруги –1,7 В транзистори VT1 і VT2 закриваються, транзистор VT3 відкривається (оскільки напруга на його базі вища за напругу на базах вхідних транзисторів) і крізь нього потече емітерний струм, що визначається резистором R6. Цей струм, зменшений на значення базового струму транзистора VT3, створює на його колекторному навантаженні падіння напруги, що дорівнює ~0,9 В. В інверсному плечі СП струму немає, і на колекторі транзисторів VT1 і VT2 встановлюється напруга, що дорівнює ~ –0,1В, за рахунок падіння напруги на резисторі R1 від базового струму транзистора VT6. Транзистори вихідних ЕП працюють весь час в активному режимі, і падіння напруги на їх емітерних переходах складає ~0,8 В. В результаті на прямому виході елемента встановлюється напруга, що відповідає логічній 1, тобто –1,7 В, а на інверсному – напруга, що відповідає логічному 0, тобто –0,9 В. Якщо ж хоч би на один вхід елемента подається напруга –0,9 В, відкривається інверсне і закривається пряме плече струмового перемикача СП і ситуація змінюється на протилежну.

До переваг ІС ЕЗЛ–типу можна віднести задовільну схемно–технологічну відпрацьованість і, як слідство, задовільний середній процент виходу придатних мікросхем і відносно невисоку їх вартість при виготовленні; високу швидкодію при середній потужності споживання або надвисоку швидкодію при великій потужності споживання; хороший фактор якості, тобто малий добуток часу затримки на потужність споживання; здатність працювати на низькоомні узгоджені лінії зв’язку і навантаження; хорошу відносну завадостійкість; високу стабільність динамічних параметрів при зміні температури і напруги живлення; високу навантажувальну здатність та ін. ІС ЕЗЛ–типу отримали достатньо широке розповсюдження при конструюванні швидкодіючої і високопродуктивної обчислювальної техніки. Головний недолік ІС ЕЗЛ–типу – висока потужність споживання, що спричиняє потребу в потужних блоках живлення, створювати системи інтенсивного охолодження.

Інтегральні схеми на МОП–транзисторах (метал–оксид–напівпровідник) мають нижчу швидкодію, ніж елементи ТТЛ- або ЕЗЛ–типу. Однак ці елементи відрізняються меншою потужністю споживання, більшою навантажувальною здатністю і завадостійкістю, потребують меншу площу на поверхні ІС, дешевше елементів ТТЛ- і ЕЗЛ–типу. Тому вони широко застосовуються, особливо в цифрових пристроях невисокої швидкодії або в пристроях, для яких важлива висока ступінь інтеграції.

В основі роботи МОП–транзисторів лежить ефект керування полем (польові транзистори). По принципу дії вони є аналогами електронних ламп, оскільки керуються напругою, а не струмом. МОП–транзистори бувають n- і p–типу.

На рис. 11-а наведена схема інвертора на МОП–тразисторі n–типу. Виток В транзистора виконує тут роль, схожу з роллю емітера в транзисторах. До затвору З (входу схеми) прикладається керуюча напруга, стік С є виходом схеми. При зміні напруги на затворі З змінюється опір між витоком В і стоком С (від сотень Ом до сотень мегаОм), що призводить до зміни струму, що протікає через транзистор, і вихідної напруги схеми. При надходженні на затвор З сигналу високої напруги, опір між витоком В і стоком С падає і на виході встановлюється низька напруга. При надходженні на вхід сигналу низького рівня опір транзистора стає дуже великим і на виході встановлюється висока напруга. Як навантажувальний опір в схемах на МОП–транзисторах технологічно зручно використовувати МОП–транзистор, на затвор З якого подається напруга, що ставить його в режим відкритого транзистора (рис. 11-б).

Поряд з навантажувальним резистором в схемах на МОП–транзисторах використовуються МОП–транзистори p–типу, живлення яких і керування проводиться від’ємними напругами. Інвертор з транзисторами n- і p–типів (доповнюючі (комплементарні) транзистори) наведений на рис. 11-в. Тут при надходженні на вхід високої напруги відкривається нижній транзистор, а верхній закривається, і, навпаки, при надходженні на вхід низької напруги відкривається верхній транзистор, а нижній закривається. Схеми з доповнюючими транзисторами (комплементарні схеми) відрізняються малою потужністю споживання і більш високою швидкодією, оскільки в колах заряду і розряду паразитних ємностей виявляються включеними малі опори відкритих транзисторів.

Рис. 11. Схема логічного елемента на МОП–транзисторах.

а) – з навантажувальним резистором, б) – з навантажувальним транзистором n–типу, в) – з навантажувальним транзистором p–типу.

 

 

Рис. 12. Комбінаційні МОП-схеми:

а) – елемент ІНЕ з навантажувальним транзистором; б) – елемент АБОНЕ з навантажувальним транзистором; в) – елемент ІНЕ з доповнюючими транзисторами; г) – елемент АБОНЕ з доповнюючими транзисторами.

 

Схеми, що реалізують функції І або АБО, будуються відповідно послідовним і паралельним включенням МОП–транзисторів. При цьому звичайно на виході схеми отримуються функції ІНЕ або АБОНЕ.

Принцип роботи логічних елементів на МОП–транзисторах можна зрозуміти із схем, наведених на рис. 12. Групи логічних схем із спільними технічними характеристиками об’єднуються в серії.

Серія – комплект інтегральних схем, що мають єдине схемне і конструктивно–технологічне виконання. До складу цифрових серій поряд з комбінаційними схемами, що виконують прості логічні функції, і тригерними схемами (елементи пам’яті) входять також схеми, що уявляють собою цілі вузли і блоки арифметичних пристроїв.

Основні електричні параметри логічних схем – спільні для всіх серій цифрових інтегральних схем, що дозволяє порівнювати їх між собою: швидкодія, потужність споживання, завадостійкість, коефіцієнт розгалуження виходу (навантажувальна здатність), коефіцієнт об’єднання на вході.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекцій з дисципліни Електротехніка, електроніка та мікропроцесорна техніка

ХЕРСОНСЬКИЙ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ... Кафедра енергетики та електротехніки...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Схемна реалізація логічних функцій на прикладі функцій “НЕ”, “І”, “АБО”, 3І–НЕ”, “3АБО–НЕ” та ін.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КОНСПЕКТ ЛЕКЦІЙ
з дисципліни Електротехніка, електроніка та мікропроцесорна техніка    

Розрахунок.
Оскільки струм в опорі навантаження менший за струм стабілізації баретера, необхідно паралельно навантаженню включити опір R1, через який повинен протікати надлишковий струм І

Котушка індуктивності.
Будь–яка зміна струму і в колі з котушкою індуктивності викликає зміну магнітного потоку Ф, створеного цим струмом. Змінний магнітний потік пронизує всі витки котушки індуктивності і

Котушка індуктивності на змінному струмі
При проходженні змінного синусоїдального струму ЕРС самоіндукції повинна повністю урівноважувати прикладену напругу, тобто

Ємність
Основною технічною характеристикою конденсатора є його електроємність С (ще його номінальна (робоча напруга)). Ємність вимірюється в фарадах (Ф) або мікрофарадах (мкФ). Ємність зале

Конденсатор на змінному струмі
При підключенні до конденсатора змінної синусоїдальної напруги u = Um sin wt в колі з конденсатором виникає струм

Символічний метод
Вже можна передбачити, що при розрахунках кіл змінного струму необхідно буде використовувати складні перетворення з величинами, до яких входять тригонометричні функції, або виконувати графічні дії

Розрахунок.
Скористаємось спрощеною схемою заміщення і визначимо опір цієї схеми. Коефіцієнт трансформації k = U1 / U

Зміна вторинної напруги трансформатора
Величину вторинної напруги U2 навантаженого трансформатора іноді зручніше визначати не за розглянутою в прикладі методикою, а за готовою формулою. Познач

Трифазні трансформатори
При трансформації трифазного струму використовують або три однофазних трансформатори, або трифазний трансформатор з спільним магнітопроводом для всіх трьох фаз. Останній спосіб застосовується в уст

Навантажувальна здатність трансформатора
Номінальні параметри трансформатора Робота трансформатора супроводжується втратами енергії, що виділяється у вигляді тепла в обмотках і магнітопроводі. Втрати потужності в обмотках D

Q Принцип дії асинхронної машини.
q Магнітне поле, що обертається q Режими роботи асинхронної машини q Конструкція ротора q Механічні характеристики асинхронного двигуна. q Баланс активних потужн

Баланс активних потужностей асинхронного двигуна можна уявити таким рівнянням
Ре = DР1е + DРм + DР2е + Рмех

Багатополюсні генератори.
Втеперішній час на теплових електростанціях застосовуються головним чином двополюсні турбогенератори із швидкістю обертання n = 3000 об./хв. При двополюсному роторі один пов

Статичні і динамічні характеристики схем включення.
Вольт-амперні характеристики транзисторів розділяють на статичні і динамічні. Статичні характеристики є графічним відображенням залежностей між струмами і напругами на

Хрест-характеристика транзистора
Для практичного використання вольт-амперних характеристик транзистора в аналізі і розрахунку зручно використовувати суміщену хрест-характеристику, на якій в однаковому масштабі у відповідних квадра

Підсилювачі.
Пристрої, призначені для підсилення електричних сигналів мають назву підсилювачі. Процес підсилення є один з випадків процесу керування енергією і, в принципі полягає в то

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Характеристики підсилювачів
· Викривлення, що виникають у підсилювачі внаслідок неоднакового підсилення сигналів різної частоти називаютьчастотними викривленнями.Вони виникають за рахунок реактивних елементів

Електронний генератор синусоїдальних електричних коливань
Самозбуджуємий генератор (автогенератор) синусоїдальних коливань уявляє собою резонансний підсилювач з додатним зворотним зв’язком без стороннього джерела вхідного сигналу.

Вступ до модуля “Мікропроцесорна техніка”.
Цей розділ принципово відрізняється від попередніх. Якщо в розділі “Основи електротехніки” розглядалась робота електротехнічних пристроїв з точки зору електроенергетики, а в розділ

Уявлення про інтегральні схеми
Інтегральна схема (ІС) – це мікроелектронний виріб, що виконує певну функцію по перетворенню і обробці сигналів і має високу щільність електрично з’єднаних мікромініатюрних радіоелектронних елемент

Уявлення про мікропроцесорні засоби
Розвиток технології і схемотехніки мікроелектронних схем призвів до створення великих інтегральних схем (ВІС), що являють собою універсальні за призначенням, функціонально закінчені пристрої і по с

Типова структура мікропроцесорного пристрою
На рисунку представлена спрощена типова структура мікропроцесорного пристрою (або системи), призначеного для обробки даних або керування деяким процесом. Приблизно таку ж структуру мають мікро-ЕОМ

Системи числення
Система числення – сукупність прийомів і правил зображення чисел цифровими знаками. Системи числення діляться на непозиційні і позиційні. Непозиційні системи ч

Таблиця 1. Таблиця відповідності чисел в різних системах числення
Основа 10-кова 2-кова 8-кова 16-кова Числа

Загальні відомості про уявлення інформації в МП-системах
Інформація в МП-системах являє собою дані, що підлягають обробці, і програми обробки цих даних. Як вже відмічалося, використовується цифровий спосіб представлення інформації, тобто і команди програ

Додаткова інформація
Арифметичні операції над двійковими числами відрізняються простотою і легкістю технічного виконання. Приклади: Додавання : 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1

Кодування чисел в МП-системах
Вихідні дані, а також проміжні результати в МП-системах можуть бути додатними і від’ємними. Для зображення знаку числа в розрядній сітці перед старшим цифровим розрядом вводиться додатковий знакови

Елементи алгебри логіки
Для математичного опису роботи МП-пристроїв, синтезу і аналізу схем широко використовується алгебра логіки (алгебра висловлювань, булева алгебра [Джордж Буль – англійський м

Логічні операції
Операція «НЕ» (інверсія, логічне заперечення, NOT). Нехай є деяке висловлювання А. Заперечення цього висловлювання позначається`

Ugrave; 1= 1
Правило логічного множення справедливе не тільки для двох співмножників, але і для будь-якої їх кількості, тобто A Ù B Ù

Uacute; 1= 1
Правило логічного додавання справедливе не тільки для двох доданків, але і для будь-якої їх кількості, тобто A Ú B Ú

Тригерний пристрій та його схемна реалізація.
Тригер – електронний пристрій, за допомогою якого можна запам’ятовувати, зберігати і зчитувати двійкову інформацію. Він має два стійких стани рівноваги: один із стійких станів прий

Типи тригерів за способом функціонування.
Тригер може бути оснащений лічильним входом. При надходженні сигналу на цей вхід тригер змінює будь-який свій ст

Синхронний однотактний RS–тригер.
На рисункунаведена схема і умовне позначення синхронного однотактного RS–тригера, виконаного на елементах І–НЕ. Елементи 1 і 2 утворюють схему вхідної логіки RS–тригера, поб

Синхронний двотактний RS–тригер.
Двотактний RS–тригер на елементах І–НЕ: а) – схема двотактного RS–тригера; б) – умовне графічне позначення.

Т–тригер.
Це тригер з лічильним входом (однорозрядний лічильник). Він може бути побудований з використанням двотактного синхронного RS–тригера. Т–тригер реалізує функцію виду

D–тригер.
D–тригер на основі двотактного RS–тригера: а) – функціональна схема; б) – умовне графічне позначення.

JK–тригер.
Розповсюдженим типом тригера в системах інтегральних логічних елементів є універсальний двотактний JK–тригер а) – схемна реалізація; б) – умовне позначення:

Регістр як вузол МП-системи. Призначення та класифікація.
При виконанні різних арифметичних і логічних операцій і взагалі при обробці інформації виникає необхідність в зберіганні коду числа на протязі деякого часу. Іноді необхідно зсунути цей код вправо а

Регістри прийому і передачі інформації.
На схемах, що наводяться далі, будуть показані лише ті кола, про які безпосередньо йде мова. Якщо, наприклад, говориться, що регістр містить код слова, то існують кола, по яких цей код занос

Приклади схемної реалізації зсуваючого регістру
Зсуваючі регістри призначені для виконання операції зсуву коду слова, тобто для переміщення цифр слова в напрямку від старших до молодших розрядів (зсув вправо) або від молодших до

Реалізація порозрядних операцій в регістрах.
Звичайно, операція видачі коду з регістра об’єднується з операцією прийому цього коду на інший регістр. В процесі передачі інформації з регістра на регістр можлива змістовна переробкакодів слів. В

Виконання порозрядних операцій «логічне додавання», «логічне множення».
На рис. 1 наведена схема для реалізації виконання операцій порозрядного додавання і множення. В Рг1 записаний код числа x1, x

Виконання порозрядної операції «складання за mod 2».
Схема регістра, в якому виконується операція порозрядного додавання за mod 2 наведена на рис. 2. Нехай в регістр

Лічильник як вузол МП-системи. Призначення та класифікація
Лічильник уявляє собою пристрій, призначений для підрахунку числа сигналів, які надходять на його вхід, і фіксації цього числа у вигляді коду, що зберігається в тригерах. Кільк

Лічильник з безпосередніми зв’язками з послідовним переносом.
В цих лічильниках кожний наступний тригер (і+1) – го розряду запускається від інформаційних виходів (Q i ,

Лічильник з паралельним переносом.
Для прискорення спрацьовування лічильники виконують з паралельним переносом. На рис. 2 зображена схема чотирьохрозрядного лічильника на JK–тригерах з паралельним переносом. Як схеми І

Реверсивний лічильник з послідовним переносом.
В реверсивному лічильнику передбачена спеціальна перемикаюча схема для переключення лічильника або в режим додавання, або в режим віднімання.

Дешифратори. Класифікація.
Дешифратором називається комбінаційна схема, яка має n входів і до 2n виходів, і, яка перетворює n

Шифратори і перетворювачі кодів
Шифратори і перетворювачі кодів – це комбінаційні схеми, призначені для перетворення числової інформації з однієї двійкової форми в іншу. Розглянемо побудову методом синте

Мультиплексори
Мультиплексор – це комутатор інформаційних сигналів, що забезпечує передачу інформації, яка надходить по одній, вибраній з кількох, вхідній лінії зв’язку, на одну вихідну лінію. Вхідна лінія

Суматор як вузол МП-системи. Призначення та класифікація.
Суматор – електронний вузол, що виконує операцію сумування цифрових кодів двох чисел. Сумування полягає в порозрядному додаванні значень цих чисел і додаванні в кожному розряді одиниц

Однорозрядний комбінаційний суматор.
Це логічна схема, яка забезпечує отримання сигналів суми та переносу при одночасній подачі кодів слів-дод

Однорозрядний накопичуючий суматор.
Це логічна схема, в якій вхідні сигнали хі, уі, рі-1 надходять на вхід почергово і накопичую

Багаторозрядні суматори
В залежності від того, як передаються коди доданків, можуть бути два способи додавання, а відповідно два типу су

Запам’ятовуючі пристрої мікропроцесорних систем
Запам’ятовуючі пристрої (ЗП) – це найважливіша складова частина будь-якої мікропроцесорної системи. За функціональним призначенням всі ЗП можна поділити на такі

Оперативні запам’ятовуючі пристрої
За принципом зберігання інформації напівпровідникові ОЗП поділяються на динамічні і статичні. Динамічні ЗП побудовані на основі запам’ятовуючого ел

Постійні запам’ятовуючі пристрої
Постійні запам’ятовуючі пристрої (ПЗП) в МП-системах використовуються для зберігання програм та іншої незмінюваної інформації. Важлива перевага ПЗП в порівнянні з ОЗП – зберігання інф

Типова структура мікропроцесора.
Мікропроцесор (МП) – функціонально закінчений пристрій обробки інформації, керований командами програми, які по черзі надходять із запам’ятовуючого пристрою МП-системи. Конструктивн

Основні сигнали процесора.
При використанні конкретного МП необхідно ясно уявляти динаміку його роботи, тобто на яких шинах, в залежності від яких керуючих сигналів і коли МП буде видавати ту чи іншу інформацію. Це в подальш

Особливості побудови МП-систем
МП-система – це сукупність взаємодіючих ВІС МП–набору, яка організована в систему з мікропроцесором (вузол обробки інформації) (див. лекцію 18). До складу типової структури МП–системи входять мікро

Мікропроцесорні засоби в системах керування
Мікропроцесорні засоби все частіше використовуються в системах керування, в тому числі і системах, що працюють в реальному часі. МП-системою реального часун

Принцип перетворення напруги в цифровий код.
Принцип перетворення напруги в цифровий код полягає в наступному. Нехай датчик вимірює значення деякого параметра, який змінюється довільно, і видає напругу пропорційну вимірюваній

Перетворювачі напруги в код.
Схеми перетворювача напруги в код ступінчастого типу наведена на рис. 2-а. На вхід схеми подається напруга Uвх, яка за допомогою часово-імпульсного перетворювача

Перетворювачі кута повороту в код.
Широке розповсюдження отримали перетворювачі кутових переміщень в код, що уявляють собою кодуючий диск, який закріплений на валу вимірювального механізму. Диск розбивається на концентричні

Цифрово-аналогові перетворювачі.
Двійкові коди в аналогові еквіваленти перетворюються різними способами, але всі вони основані на додаванні аналогових складових, пропорційних деяким двійковим приростам (елементам) вихідного двійко

Перетворювач коду в напругу.
Приклад схеми перетворювача двійкового коду в напругу представлений на рис. 5. Рис. 5. Схема

Перетворювач коду в кут повороту.
Перетворювачі коду в кут повороту часто називають цифровими слідкуючими системами. Одна з можливих схем цифрової слідкуючої системи наведена на рис. 6.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги