рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Предел и непрерывность функции нескольких переменных.

Предел и непрерывность функции нескольких переменных. - раздел Философия, Функции двух и трех переменных как функции точки   Введем Понятие δ-Окрестности Точки М...

 

Введем понятие δ-окрестности точки М0 (х0 , у0) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М0 (х0 , у0 , z0). Для n-мерного пространства будем называть δ-окрестностью точки М0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М0. Иногда это множество называют «шаром» в n-мерном пространстве.

Определение 1.4. Число А называется пределом функции нескольких переменных f в точке М0, если такое, что | f(M) – A| < ε для любой точки М из δ-окрестности М0.

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М0, условно говоря, по любой траектории внутри δ-окрестности точки М0. Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов, получаемых последовательными предельными переходами по каждому аргументу в отдельности.

 

 

Примеры.

1. Покажем, что функция не имеет предела при МО(0,0). Действительно, если в качестве линии, по которой точка М приближается к началу координат, выбрать прямую у = х, то на этой прямой . Если же траекторией движения считать прямую у = 2х, то . Следовательно, предел в точке (0,0) не существует.

2. Найдем повторные пределы функции при х→0, у→0. , . Если же произвести предельные переходы в обратном порядке, получим: Таким образом, повторные пределы оказались различными (откуда следует, конечно, что функция не имеет в точке (0,0) предела в обычном смысле).

 

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

 

Определение 1.5. Функция f называется непрерывной в точке М0 , если (1.2)

Если ввести обозначения , то условие (1.2) можно переписать в форме (1.3)

Определение 1.6. Внутренняя точка М0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (1.2), (1.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линииили поверхности разрыва.

Примеры.

1. Функция z = x² + y² непрерывна в любой точке плоскости Оху. Действительно, , поэтому .

2. Единственной точкой разрыва функции является точка (0,0).

3. Для функции линией разрыва является прямая х + у = 0.

 

Свойства пределов и непрерывных функций.

 

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М0 , то существует и предел сложной функции при , где - координаты точки Р0.

3) Если функции f(M) и g(M) непрерывны в точке М0, то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M)•g(M), f(M)/g(M) (если g(M0) ≠ 0).

4) Если функции непрерывны в точке Р0 , а функция непрерывна в точке М0 , где , то сложная функция непрерывна в точке Р0.

5) Функция непрерывная в замкнутой ограниченной области D, принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения А и В, то она принимает в области D и любое промежуточное значение, лежащее между А и В.

7) Если функция непрерывная в замкнутой ограниченной области D, принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D, в которой f = 0.

 

Геометрическое изображение, то есть график функции двух переменных, - поверхность в пространстве (в прямоугольной декартовой системе координат ). Так, функция имеет графиком полусферу радиусом 1 (рис. 11.2).

 

Рис. 11.2

 

Рис. 11.3

При исследовании характера функции двух переменных удобно анализировать линии уровня с уравнением . К примеру, для линии уровня — семейство концентрических окружностей (рис. 11.3).

В случае функции трёх переменных область определения представляет собой множество точек в пространстве, в частности некоторое тело в пространстве, однако представить функцию трёх переменных графически уже не представляется возможным. Для исследования характера её изменения рассматриваются поверхности уровня с уравнениями .

Примеры:

1) : - шар радиусом 1 с центром в т. .

2) .

Изучать функции нескольких переменных удобно, путём рассмотрения функции двух переменных благодаря их геометрической наглядности. Полученные результаты можно обобщить на случай большего числа независимых переменных.

Введём топологию в . Определения иллюстрируются с помощью рис. 11.4.

 

Рис. 11.4

О: -окрестностью т. именуется совокупность всех точек , которые лежат внутри круга радиусом с центром в т. : . — проколотая окрестность т. .

О: Точка , когда .

О: Множество именуется областью, если:

10. Любая т. есть его внутренняя точка (свойство открытости).

20. Две точки множества можно объединить ломаной линией, которая состоит из точек множества (свойство связности).

О: Граничными точками области именуются такие точки, в окрестности которых содержатся как точки, которые ей принадлежат , так и точки, которые ей не принадлежат. Множество всех граничных точек представляет собой границу области именуется открытой областью.

О: Область именуется ограниченной, если для неё можно подобрать круг, который бы её полностью покрывал. Область именуется односвязной, когда для любого замкнутого контура, который находится в этой области, ограниченная им часть плоскости целиком принадлежит .

Область на рис. 11.1, а является односвязной, а область на рис. 11.1, б, не является односвязной.

Для пространства топология вводится аналогично. Дадим лишь определение -окрестности т. .

О: радиусом :

 

 

 

– Конец работы –

Эта тема принадлежит разделу:

Функции двух и трех переменных как функции точки

Геометрическое изображение функции двух переменных с помощью поверхностей и линий... Частные производные функции нескольких переменных геометрический смысл... Правила и таблица производных элементарных функций справедливы и применимы для любой переменной либо какой нибудь...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Предел и непрерывность функции нескольких переменных.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предел функции. Непрерывность в точке и в области.
Определение 1.1. Переменная z (с областью изменения Z) называется функцией двух независимых переменных х,у в множестве М, если каждой паре

Полный дифференциал функции нескольких переменных.
  На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производныхпе

Частные производные высших порядков.
Рассмотрим функцию двух переменных n=2, . Предположим, что функция имеет частные производные , , которые являются функциями двух переменных. Их называют частными произво

Достаточные условия экстремума функции двух переменных.
    Говорят, что функция имеет максимум в точке , т.е. при , если для всех точек , достаточно близких к точке и отличных от неё. Говорят,

Решение.
На первом шаге, в соответствие с достаточным условием экстремума функции двух переменных, найдем точки, удовлетворяющие условию:   Частные производные первого порядка от

Наибольшее и наименьшее значение функций в замкнутой ограниченной области.
Пусть функция непрерывна в замкнутой ограниченной области G, дифференцируема внутри этой области. Чтобы найти наибольшее и наименьшее значения функции в этой области, нужно: 1)най

Алгоритм исследования функции двух переменных на условный экстремум
1. Составить функцию Лагранжа 2. Решить систему   3. Определить характер экстремума в каждой из найденных в предыдущем пункте стационарных точек. Для этого применить люб

Метод замены переменной в неопределенном интеграле.
  На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной

Метод интегрирования по частям.
  И снова, здравствуйте. Сегодня на уроке мы научимся интегрировать по частям. Метод интегрирования по частям – это один из краеугольных камней интегрального исчисления. На зачете, эк

В интегралах рассматриваемого типа завсегда обозначается логарифм.
Технически оформление решения реализуется следующим образом, в столбик записываем:   То есть, за мы обозначили логарифм, а за – оставшуюся часть подынтеграль

Интегрирование рациональных дробей.
Рациональной дробью называется выражение вида , где , –многочлены степеней n и m соответственно. Если , рациональная дробь называется правильной, в противном

Интегрирование иррациональных функций.
  Вот и пробил час интегралов от корней, они вас заждались! С моей точки зрения интегрирование иррациональных функций следует изучать уже при некоторых знаниях и навыках решения неопр

Случай второй
Если– целое число, то необходимо провести замену, где– знаменатель дроби. Спокойствие, только спокойствие, сейчас во всём разберемся. Пример

Интегрирование тригонометрических функций.
  На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все п

Метод замены переменной
Универсальная тригонометрическая подстановка (частный случай п.3) В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовы

Теорема об интеграле с переменным верхним пределом.
Рассмотрим функцию y = f(x), интегрируемую на отрезке [а, b]. Если х на промежутке [a, b], то функция f(x) интегрируема также на любом отрезке [а, х]. Предположим, что х меняется на отрезке [а, b],

Замена переменной в определенном интеграле.
При вычислении определенных интегралов с использованием формулы Ньютона-Лейбница предпочтительно жестко не разграничивать этапы решения задачи (нахождение первообразной подынтегральной функции, нах

Интегрирование по частям при вычислении определенного интеграла.
Метод интегрирования по частям в определенном интеграле Здесь новизны еще меньше. Все выкладки статьи Интегрирование по частям в неопределенном ин

Вычисление площади плоских фигур в полярных координатах.
Любая точка в полярной системе координат задается полярным углом и соответствующим полярным радиусом . - это угол, отсчитываемый от полярной оси в положительном направлении (против часовой стрелки)

Площадь криволинейного сектора - вывод формулы.
Выведем формулу для вычисления площади криволинейного сектора. Для этого нам понадобится известная из школьного курса геометрии формула площади кругового сектора радиуса R с внутрен

Замечание.
Так мы поступаем, если считаем функцию неотрицательной, в противном случае ориентируемся только на область определения и период функции. Разберем на примерах. Пример.

Вычисление объема тела по площадям параллельных сечений.
Рассмотрим тело D, ограниченное плоскостями х = а и х = b (рис. 247).   Через S(x) обозначим площадь сечения тела D плоскостью, проходящей

Объем тела вращения.
Вычисление объема тела, образованного вращением плоской фигуры вокруг оси Пример 1 Вычислить объем тела, полученного вращен

Интегралы с бесконечными пределами интегрирования.
Что значит вычислить несобственный интеграл? Вычислить несобственный интеграл – это значит, найти ЧИСЛО(точно так же, как в определенном интеграле), или доказать, что он ра

Всегда смотрим и записываем, является ли подынтегральная функциянепрерывнойна интервале интегрирования.
Пример 2 Вычислить несобственный интеграл или установить его расходимость. Выполним чертеж: Во-первых, замечаем следующее: подынтегральная функция непреры

Если подынтегральной функции не существует в точке
Сразу пример, чтобы было понятно: . Вроде бы это определенный интеграл. Но на самом деле – это несобственный интеграл второго рода, если мы подставим в подынтегральную функцию значение нижнего пред

Если подынтегральной функции не существует в точке
Бесконечная криволинейная трапеция для такого несобственного интеграла принципиально выглядит следующим образом:   Здесь всё абсолютно так же, за исключением того, что предел

Интегралы от неограниченных функций.
Определение 1. Пусть функция f(x) определена и неограничена на полуинтервале [а, b), при этом она ограничена и интегрируема на любом отрезке [а, с], где а с Если существует конечный предел , то он

Признаки сходимости несобственных интегралов.
Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака: признак сходимости Абеля:

Дифференциальные уравнения с однородными функциями.
На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка. Наряду с уравнениями с разделяющимися переменнымии лине

В 19-ти случаях из 20-ти решение однородного уравнения записывают в виде общего интеграла.
Ответ: общий интеграл: Почему почти всегда ответ однородного уравнения дается в виде общего интеграла? В большинстве случаев невозможно выразить «игрек» в явном виде (полу

Линейные дифференциальные уравнения первого порядка и уравнения Бернулли.
На данном уроке мы рассмотрим алгоритм решения третьего типа дифференциальных уравнений, который встречается практически в любой контрольной работе – линейные неоднородные дифференциальные

Дифференциальные уравнения высших порядков, допускающие понижение порядка.
Кроме распространенных однородных и неоднородных уравнений второго порядка и высших порядков с постоянными коэффициентами, рядовому студенту часто приходится сталк

Линейные однородные уравнения n-го порядка, свойства их решений.
Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не п

Теорема о структуре общего решения линейного однородного дифференциального уравнения.
Теорема 4. Если - линейно независимые на решения линейного однородного дифференциального уравнения -го порядка с непрерывными коэффициентами , то функция , (9) где - произвольные

Теорема о структуре общего решения линейного неоднородного дифференциального уравнения.
Рассмотрим линейное неоднородное дифференциальное уравнение y(n) + an-1(x)y(n - 1)

Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами В теории и практике различают два типа таких уравне

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги