рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные элементы оптического волокна

Основные элементы оптического волокна - Лекция, раздел Философия, КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ ИНФОкоммуникаЦИОННЫЕ системы и СЕТИ Ядро. Ядро – Светопередающая Часть Волокна, Изготавливаемая Либо Из Ст...

Ядро. Ядро – светопередающая часть волокна, изготавливаемая либо из стекла, либо из пластика. Чем больше диаметр ядра, тем большее количество света может быть передано по волокну.

Демпфер. Назначение демпфера - обеспечение более низкого коэффициента преломления на границе с ядром для переотражения света в ядро таким образом, чтобы световые волны распространялись по волокну.

Оболочка. Оболочки обычно бывают многослойными, изготавливаются из пластика для обеспечения прочности волокна, поглощения ударов и обеспечения дополнительной защиты волокна от воздействия окружающей среды. Такие буферные оболочки имеют толщину от 250 до 900 мкм.

Размер волокна в общем случае определяется по внешним диаметрам его ядра, демпфера и оболочки. Например, 50/125/250 - характеристика волокна с диаметром ядра 50 мкм, диаметром демпфера 125 мкм и диаметром оболочки 250 мкм. Оболочка всегда удаляется при соединении или терминировании волокон.

Тип волокна идентифицируется по типу путей, или так называемых "мод", проходимых светом в ядре волокна. Существует два основных типа волокна - многомодовое и одномодовое. Ядра многомодовых волокон могут обладать ступенчатым или градиентным показателями преломления. Многомодовое волокно со ступенчатым показателем преломления получило свое название от резкой, ступенчатой, разницы между показателями преломления ядра и демпфера.

В более распространенном многомодовом волокне с градиентным показателем преломления лучи света также распространяются в волокне по многочисленным путям. В отличие от волокна со ступенчатым показателем преломления, ядро с градиентным показателем содержит многочисленные слои стекла, каждый из которых обладает более низким показателем преломления по сравнению с предыдущим слоем по мере удаления от оси волокна. Результатом формирования такого градиента показателя преломления является то, что лучи света ускоряются во внешних слоях и их время распространения в волокне сравнивается с временем распространения лучей, проходящих по более коротким путям ближе коси волокна.

Таким образом, волокно с градиентным показателем преломления выравнивает время распространения различных мод так, что данные по волокну могут быть переданы на более дальние расстояния и на более высоких скоростях до того момента, когда импульсы света начнут перекрываться и становиться неразличимыми на стороне приемника.

Волокна с градиентным показателем представлены на рынке с диаметрами ядра 50, 62,5 и 100 мкм.

Одномодовое волокно, в отличие от многомодового, позволяет распространяться только одному лучу или моде света в ядре. Это устраняет любое искажение, вызываемое перекрытием импульсов. Диаметр ядра одномодового волокна чрезвычайно мал - приблизительно 5 -10 мкм. Одномодовое волокно обладает более высокой пропускной способностью, чем любой из многомодовых типов. Например, подводные морские телекоммуникационные кабели могут нести 60000 речевых каналов по одной паре одномодовых волокон.

3.7 Затухание

Собственные потери оптического волокна. Свет является электромагнитной волной. Скорость света уменьшается при распространении по прозрачным материалам по сравнению со скоростью распространения света в вакууме. Волны инфракрасного диапазона также распространяются различно по оптическому волокну. Поэтому затухание, или потери оптической мощности, должны измеряться на специфических длинах волн для каждого типа волокна. Длины волн измеряются в нанометрах (нм).

Потери оптической мощности на различных длинах волн происходят в оптическом волокне вследствие поглощения, отражения и рассеяния. Эти потери зависят от пройденного расстояния и конкретного вида волокна, его размера, рабочей частоты и показателя преломления.

Величина потерь оптической мощности вследствие поглощения и рассеяния света на определенной длине волны выражается в децибелах оптической мощности на километр (дБ/км).

Волокна оптимизированы для работы на определенных длинах волн. Например, можно достичь потерь в 1 дБ/км для многомодового волокна 50/125 мкм на длине волны 1300 нм, и менее 3 дБ/км (50%-е потери мощности) для того же волокна на 850 нм. Эти два волновых региона, - 850 и 1300 нм, являются областями наиболее часто определяемыми для рабочих характеристик оптических волокон и используются современными коммерческими приемниками и передатчиками. Кроме того, одномодовые волокна оптимизированы для работы в регионе 1550 нм.

В коаксильном кабеле, чем больше частота, тем больше уменьшается амплитуда сигнала с увеличением расстояния, и это явление называется затуханием. Частота для оптического волокна постоянна до тех пор, пока она не достигнет предела диапазона рабочих частот. Таким образом, оптические потери пропорциональны только расстоянию. Такое затухание в волокне вызвано поглощением и рассеиванием световых волн на неоднородностях, вызванных химическими загрязнениями, и на молекулярной структуре материала волокна. Эти микрообъекты в волокне поглощают или рассеивают оптическое излучение, оно не попадает в ядро и теряется. Затухание в волокне специфицируется производителем для определенных длин волн: например, З дБ/км для длины волны 850 нм. Это делается потому, что потери волокна изменяются с изменением длины волны.

Потери на микроизгибах. Без специальной защиты оптическое волокно подвержено потерям оптической мощности вследствие микроизгибов. Микроизгибы - это микроскопические искажения волокна, вызываемые внешними силами, которые приводят к потере оптической мощности из ядра. Для предотвращения возникновения микроизгибов применяются различные типы защиты волокна. Волокна со ступенчатым показателем относительно более устойчивы к потерям на микроизгибах, чем волокна с градиентным показателем.

Полоса пропускания (ширина спектра) - это мера способности волокна передавать определенные объемы информации в единицу времени. Чем шире полоса, тем выше информационная емкость волокна. Полоса выражается в МГц-км. Например, по волокну с полосой 200 МГц-км можно передавать данные с частотой 200 МГц на расстояния до 1 км или с частотой 100 МГц на расстояния до 2 км. Благодаря сравнительно большой полосе пропускания, волокна могут передавать значительные объемы информации. Одно волокно с градиентным показателем преломления может с легкостью передавать 500 миллионов бит информации в секунду. Тем не менее, для всех типов волокон существуют ограничения ширины полосы, зависящие от свойств волокна и типа используемого источника оптической мощности.

Для точного воспроизведения передаваемых по волокну данных световые импульсы должны распространяться раздельно друг от друга, имея четко различимую форму и межимпульсные промежутки. Однако лучи, несущие каждый из импульсов, проходят разными путями внутри многомодового волокна. Для волокон со ступенчатым показателем преломления лучи, проходя зигзагообразно по волокну под разными углами, достигают приемника в разное время.

Это различие во времени прибытия импульсов в точку приема приводит к тому, что импульсы на выходе линии искажаются и накладываются друг на друга. Это так называемое модальное рассеивание, или модальная дисперсия, или уширение светового импульса ограничивает возможную для передачи частоту, так как детектор не может определить, где заканчивается один импульс и начинается следующий. Разница во временах прохождения самой быстрой и самой медленной мод света, входящих в волокно в одно и то же время и проходящих 1 км, может быть всего лишь 1 -3 нс, однако такая модальная дисперсия влечет за собой ограничения по скорости в системах, работающих на больших расстояниях. Удваивание расстояния удваивает эффект дисперсии.

Модальная дисперсия часто выражается в наносекундах на километр, например, 30 нс/км. Также она может быть выражена и в частотной форме, например 200 МГц-км. Это означает, что волокно или система будут эффективно работать в пределах частот до 200 МГц, прежде чем рассеивание начнет сказываться на пропускной способности на расстояниях более одного километра. Эта же система сможет передавать сигнал с частотой 100 МГц на расстояние в два километра.

Дисперсия делает многомодовое волокно со ступенчатым показателем преломления наименее эффективным по ширине полосы среди всех трех типов волокна. Поэтому оно используется на более коротких участках и низких частотах передачи. Типичным значением ширины полосы ступенчатого волокна является 20 МГц-км.

Размеры ядра одномодового волокна малы - от 8 до 10 мкм, что позволяет проходить по волокну только одному лучу света. Так как модальная дисперсия в данном случае полностью отсутствует, полоса пропускания у такого волокна гораздо больше, чем у многомодового, что позволяет достигать рабочих частот свыше нескольких сотен гигагерц на километр (ГГц-км).

Оптические волокна обладают еще одной разновидностью дисперсии, возникающей вследствие того, что разные длины волн распространяются в среде с разной скоростью. Такую "спектральную дисперсию" можно наблюдать, когда белый свет распадается на семь цветов радуги, проходя через стеклянную призму. Волны, представляющие разные цвета, движутся в среде с разной скоростью, что приводит к различию в траекториях распространения лучей. Если бы оптический источник волоконной системы излучал свет одной частоты, спектральная дисперсия или материальная дисперсия (или хроматическая дисперсия, как ее еще часто называют) была бы устранена. В действительности, абсолютно монохроматических источников света не существует. Лазеры обладают определенным, хотя и очень небольшим, уширением спектра излучаемого света. У источников света на основе LED (полупроводниковые светодиоды) спектральный диапазон в 20 раз шире, чем у лазера, и спектральная дисперсия, в свою, очередь намного выше. Дисперсия в стеклянном волокне минимальна в регионе около 1300 нм, позволяя одномодовым волокнам иметь значительную полосу на данной длине волны.

Одномодовое волокно обычно используется с лазерными источниками благодаря своей высокой спектральной чистоте. Для обеспечения эффективного функционирования таких систем требуются прецизионные коннекторы и муфты. Благодаря своим низким потерям и высоким пропускным характеристикам, одномодовые волокна, как правило, являются наилучшим и, как правило, единственным выбором для монтажа протяженных высокоскоростных линий, таких как междугородние телекоммуникационные системы.

Методы доступа

Обработку кадров, передаваемых по сети, выполняют сетевой адаптер, устанавливаемый в слот расширения станции, и соответствующий ему драйвер.

Сетевой адаптер (СА) и драйвер СА реализуют следующие функции:

· поддерживают метод доступа в сети,

· формируют и анализируют кадры, передаваемые по сети.

В зависимости от поддерживаемого метода доступа и типа кадра сетевые адаптеры можно разделить на несколько групп: Ethernet, Token Ring, ARCNet, FDDI и др. Сети, где устанавливаются перечисленные адаптеры, имеют те же названия: сети Ethernet, сети Token Ring и т. д. Следует отметить, что рассматриваемые СА поддерживают разные методы доступа и типы кадров, поэтому они не совместимы между собой. Следовательно, на станциях, подключаемых к одному сегменту сети, необходимо устанавливать сетевые адаптеры одного типа.

Ниже рассматриваются методы доступа и кадры для сетей Ethernet, Token Ring, ARCNet и FDDI.

 

3.8 Метод доступа и кадры для сетей Ethernet

На логическом уровне в Ethernet применяется топология шина:

· все устройства, подключённые к сегменту сети, равноправны, т. е. любая станция может начать передачу в любой момент времени, если передающая среда свободна,

· кадр, передаваемый одной станцией, одновременно анализируется всеми остальными станциями сегмента.

Стандарты Ethernet поддерживают метод доступа CSMA/CD (Carrier Sense Multiple Access / Collision Detection) и обеспечивают скорость передачи по шине 10 Мбит/с и 100 Мбит/с. По-русски этот метод доступа называется "Множественный доступ с контролем несущей и обнаружением коллизий". Ниже приводится краткое описание этого метода доступа.

Передача данных происходит следующим образом. Станция проверяет состояние среды передачи данных (шины). Если среда занята, то станция ожидает освобождения среды. Если среда свободна, то станция начинает передавать кадр данных, одновременно контролируя состояние среды (несущую частоту f1). В том случае, когда за время передачи кадра станция не обнаружила состояние коллизии в сети (т. е. частота f1 не изменилась), считается, что данные переданы успешно.

Если при передаче кадра произошла коллизия (т. е. несущая частота изменилась на величины f2(f1), то станция прекращает передавать данные и выдаёт специальную последовательность из 32 битов, которая позволяет всем станциям определить, что произошла коллизия. Затем станция переходит в состояние ожидания на небольшой случайный промежуток времени, по окончании которого она, проверив среду, пытается ещё раз передать по сети свой кадр. Если за 16 попыток станции не удается передать свои данные, то считается, что среда недоступна.

Следует отметить, что коллизия (конфликт) может произойти в том случае, если среду проверяют несколько станций одновременно. Выяснив, что среда свободна, они пытаются передать свои кадры. При одновременной передаче нескольких кадров несущая частота среды изменяется до величины f2, отличной от f1 (передача одного кадра). Коллизию обнаруживают все станции, которые пытаются одновременно передать свои данные. Каждая из этих станций выполняет действия, перечисленные выше.

Существует четыре основные разновидности кадров Ethernet (рис. 1). NetWare все их поддерживает.

Ethernet_II Ethernet_802.3 Ethernet_802.2 Ethernet_SNAP

P P P 7 P 7
SFD SFD SFD 1 SFD 1
DA DA DA 6 DA 6
SA SA SA 6 SA 6
Type Length Length 2 Length 2
Пакет       DSAP 1 DSAP 1
        SSAP 1 SSAP 1
  46-   46- Control 1 Control 1
    Пакет OUI 3
        43 - ID 2
        1497 Пакет 38-
       
FCS FCS FCS 4 FCS 4

Рисунок 3.1. Типы кадров для сетей Ethernet

Цифры на рисунке обозначают длины полей кадров (в байтах). Здесь введены следующие обозначения:

- P - преамбула. Представляет собой семибайтовую последовательность единиц и нулей (101010....). Это поле предназначено для синхронизации приёмной и передающей станций.

- SFD (Start Frame Delimiter) - признак начала кадра (10101011),

- DA (Destination Address), SA (Source Address) - адреса получателя и отправителя. Они представляют собой физические адреса сетевых адаптеров Ethernet и являются уникальными. Первые три байта адреса назначаются каждому производителю Ethernet-адаптеров (для адаптеров фирмы Intel это будет значение 00AA00h, а для адаптеров 3Com - 0020afh), последние три байта определяются самим производителем. Для широковещательных кадров поле DA устанавливается в FFFFFFFFh.

- FCS (Frame Check Sequence) - контрольная сумма всех полей кадра (за исключением полей преамбулы, признака начала кадра и самой контрольной суммы). Если длина пакета передаваемых данных меньше минимальной величины, то адаптер Ethernet автоматически дополняет его до 46 байтов. Этот процесс называется выравниванием (padding). Жёсткие ограничения на минимальную длину пакета были введены для обеспечения нормальной работы механизма обнаружения коллизий.

Теперь рассмотрим специфичные поля каждого типа кадра.

Ethernet_II

Этот тип кадра был разработан первым для сетей Ethernet. Дополнительно содержит следующее поле:

Type - определяет тип протокола сетевого уровня, пакет которого переносится этим кадром (8137h - для протокола IPX, 0800h - для протокола IP, 809Bh - для протокола AppleTalk и т. д.). Все идентификаторы имеют значения старше 05bch.

Ethernet_802.3

Этот тип кадра был создан фирмой Novell и является базовым для сетей с ОС NetWare 3.11. Дополнительно содержит следующее поле:

Length - длина передаваемого пакета.

Поскольку в этом кадре отсутствует поле с типом протокола, то он может быть использован только для переноса IPX. Заголовок пакета IPX (рисунок 2.14) следует непосредственно за полем длины, поэтому первое поле пакета (поле Checksum) содержит значение FFFFh.

Ethernet_802.2

Этот тип кадра разработан подкомитетом IEEE 802.3 в результате стандартизации сетей Ethernet. Этот кадр содержит следующие дополнительные поля:

- Length - длина передаваемого пакета,

- DSAP (Destination Service Access Point) - тип протокола сетевого уровня станции-получателя (E0h - для IPX),

- SSAP (Source Service Access Point) - тип протокола сетевого уровня станции-отправителя,

- Control - номер сегмента; используется при разбиении длинных IP-пакетов на более мелкие сегменты; для пакетов IPX это поле всегда содержит значение 03h (обмен ненумерованными датаграммами).

Ethernet_SNAP

Этот кадр является модернизацией кадра Ethernet_802.2 и содержит ещё два поля: OUI (Organizational Unit Identifier) и ID, которые определяют тип протокола верхнего уровня SNAP Protocol ID.

Каждая станция начинает принимать кадр с преамбулы Р. Затем сравнивает значение адреса DA со своим адресом. Если адреса одинаковы, или пришёл широковещательный кадр, или задана специальная программа обработки, то кадр копируется в буфер станции. Если нет, то кадр игнорируется.

Ниже приведён алгоритм идентификации типа кадра сетевым адаптером:

· если за полем SA следует значение старше 05dch, то это кадр Ethernet_II,

· если за полем Length следует идентификатор FFFFh, то это кадр Ethernet_802.3,

· если за полем Length следует идентификатор AAh, то это кадр Ethernet_SNAP, иначе - это кадр Ethernet_802.2.

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ ИНФОкоммуникаЦИОННЫЕ системы и СЕТИ

КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ... ИНФОкоммуникаЦИОННЫЕ системы и СЕТИ... Тема ОСНОВНЫЕ ПОНЯТИЯ ИНФОкоммуникаЦИОННЫХ СЕТЕЙ Класс инфокоммуникационных сетей как открытые информационные системы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные элементы оптического волокна

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Возникновение понятия открытости
Развитие систем и средств вычислительной техники, расширенное их внедрение во все сферы науки, техники, сферы обслуживания и быта привели к необходимости объединения конкретных вычислительных устро

Понятие открытой системы
В настоящее время существует множество определений понятия "открытая система". Так, Ассоциация французских пользователей UNIX и открытых систем (AFUU) дает следующее определение: "От

Принципы построения
Основные требования, предъявляемые к информационной инфраструктуре, состоят в обеспечении необходимой функциональности, быстродействия, пропускной способности и безопасности. При этом исходим из то

Тема 2.
МОДЕЛИ И СТРУКТУРЫ ИНФОРМАЦИОННЫХ СЕТЕЙ 2.1 Топология Способ соединения компьютеров в сети называется топологией. При выборе конкретного т

Кольцевая топология
В этом случае все рабочие станции и сервер соединены друг с другом по кольцу, по которому посылаются данные и адрес получателя. Рабочие станции получают соответствующие данные, анализируя адрес пос

Шинная топология
Такая сеть похожа на центральную линию, к которой подключены сервер и отдельные рабочие станции. Шинная топология получила широкое распространение, что, прежде всего, можно объяснить небольшими пот

Смешанные топологии
Сегодня все чаще встречаются смешанные топологии, например, можно соединить с помощью кабеля кластеры машин, находящиеся на удаленном расстоянии друг от друга. +----------------+ кабель +-

Коаксиальные передающие среды
Коаксиальный кабель является наиболее распространенной средой, используемой для передачи радиочастотных сигналов. Конструкционно он состоит из одножильного или многожильного проводника, окруженного

Передающие среды на основе витой пары проводников
В идеальном случае линия передачи представляет собой, как минимум, два проводника, разделенных диэлектрическим материалом и имеющих равномерный зазор на всем своем протяжении. К двум проводникам пр

Кабельные системы для скоростной передачи данных
С ростом спроса на более быстрые и сложные сети растет и рынок кабельной продукции. Кабели с высокочастотными характеристиками представляют приблизительно 20% рынка и их доля будет расти с повышени

Однородность импеданса
Полезно напомнить еще раз, что грядущие приложения будут, вероятнее всего, работать в дуплексном режиме. Явление неоднородности импеданса в линии передачи аналогично сопротивлению потоку воды на от

Преимущества волокна
Волоконно-оптические коммуникации имеют ряд преимуществ по сравнению с электронными системами, использующими передающие среды на металлической основе. В волоконно-оптических системах перед

Метод доступа и кадры для сетей Token Ring
Адаптеры Token Ring поддерживают метод доступа Token Ring (маркерное кольцо) и обеспечивают скорости передачи 4 Мбит/с или 16 Мбит/с. Ниже перечислены основные положения этого метода: · ст

Метод доступа и кадры для сетей ARCNet
При подключении устройств в ARCNet применяют топологию шина или звезда. Адаптеры ARCNet поддерживают метод доступа Token Bus (маркерная шина) и обеспечивают производительность 2,5 Мбит/с. Этот мето

Протокол UDP (User Datagram Protocol)
Протокол UDP является одним из основных транспортных протоколов. Он работает непосредственно с IP-пакетами и осуществляет их мультиплексирование между различными программами и процессами. Основным

Протокол IP
Межсетевой протокол IP является базовым протоколом межсетевого взаимодействия при помощи которого осуществляется обмен информацией в глобальной сети. В обычной локальной сети протокол IP по возможн

Протокол TCP (Transmission Control Protocol)
Данный протокол тоже является транспортным протоколом и предназначен для доставки пакетов, называемых сегментами. Он применяется в случаях необходимости гарантированной доставки пакета. Здесь, по с

Протокол RIP (Routing Information Protocol)
Данный протокол предназначен исключительно для управления таблицей маршрутов. Его спецификация определяет то, как и когда будет обновляться таблица маршрутов. Необходимая для этого информация рассы

Протокол RARP (Reverse Adress Resolution Protocol)
При стандартной конфигурации серверов и локальных машин, обычно, IP-адреса компьютеров хранятся на локальных носителях и считываются в память во время загрузки систем. В случае, когда необходимо ин

Протокол BOOTP (BOOT strap Protocol)
Мы уже отмечали ранее, что не все сетевые компоненты (компьютеры, маршрутеризаторы, хабы и т.п.) имеют собственные локальные накопители информации, однако, каким-то образом, в них должна быть загру

Протокол ICMP (Internet Control Massage Protocol)
Хотя базовым протоколом межсетевого взаимодействия в Internet является IP, он не контролирует ошибочные состояния сетевой среды. Данную задачу решает специально разработанный протокол контроля сети

Протокол SLIP (Serial Line Internet Protocol)
Данный протокол является одним из старейших Internet-протоколов, используемых для подключения удаленных машин по выделенным или коммутируемым телефонным линиям через COM-порт [и модем]. Основным на

Протокол PPP (Point To Point connection)
Протокол PPP также является протоколом для соединения через последовательные порты. Как и SLIP, он "нарезает" пакеты на более мелкие куски и производит последовательную их отправку и прие

Протокол и сервис DNS (Domain Name Server)
Когда-то, достаточно давно, в Internet было сравнительно немного машин, но даже это небольшое количество трудно идентифицировалось и именовалось пользователями при помощи числовых IP-адресов. Поэто

Сервисы прикладного назначения
Протоколы и сервисы электронной почты (POP, UUCP, SMTP) Если DNS и DHCP были сервисами системного назначения и используются для систем маршрутизации и доставки пакетов (т.е. обычный пользовател

Протокол и сервис удаленного доступа Telnet
Аналогично FTP, Telnet, тоже, когда-то была всего лишь командой OC UNIX, однако, в виду ее популярности и удобства, она распространилась в виде отдельного приложения на все существующие сетевые ОС

Протокол HTTP и сервис WWW
Из всех пользовательских сервисов Internet WWW-технология (World Wide Web) или "Всемирная Паутина" распределенных информационных систем является наиболее развивающейся и прогрессирующей.

Базовая эталонная модель взаимодействия открытых систем
БЭМВОС – это концептуальная основа, определяющая характеристики и средства открытых систем. Она обеспечивает работу в одной сети систем, выпускаемых различными производителями. Разработана I

Передача данных между уровнями МВОС
Пусть, например, приложение обращается с запросом к прикладному уровню, например к файловому сервису. На основании этого запроса программное обеспечение прикладного уровня формирует сообщение станд

Соединения.
Соединение – это ассоциация функциональных блоков, устанавливаемая для передачи данных. В соответствии с семью уровнями области взаимодействия открытых систем, существует 7 видов соединений,

Абонентская система
Это система, которая является поставщиком или потребителем информации. АС реализуется в виде одного или нескольких устройств:  

Ретрансляционная система
Это система, предназначенная для передачи данных или преобразования протоколов. Необходимость объединения нескольких сетей с разными протоколами, поставило задачу создания таких ретрансляционных си

Узел коммутации каналов
Узел коммутации каналов – это ретрансляционная система, устанавливающая по вызову соединение последовательностей каналов между партнерами в течении сеанса. Основная его часть выполняет функции физи

Объединение сетей
Таким образом, ретрансляционные системы реализуют межсетевые, канальные и физические процессы. Задачей является выполнение функций, в том числе преобразований, необходимых для соединения частей сет

Административные системы
Административные системы – это системы, обеспечивающие управление сетью либо её частью. На неё возлагаются следующие функции: · сбора информации и учёта работы компонентов сети (вре

Тема 5.
МОНОКАНАЛЬНЫЕ ПОДСЕТИ И МОНОКАНАЛ. КОММУНИКАЦИОННЫЕ ПОДСЕТИ. МНОГОКАНАЛЬНЫЕ ПОДСЕТИ. ЦИКЛИЧЕСКИЕ ПОДСЕТИ. УЗЛОВЫЕ ПОДСЕТИ.   Моноканал – это канал, одновременно (с точностью

Моноканальная сеть
Моноканальная сеть – это локальная сеть, ядром которой является моноканал. Моноканал в соответствии с базовой эталонной моделью взаимодействия открытых систем выполняет в сети роль физичес

Тема 6.
МЕТОДЫ МАРШРУТИЗАЦИИ ИНФОРМАЦИОННЫХ ПОТОКОВ 6.1 Маршрутизаторы Довольно часто в компьютерной литературе дается следующее обобщенное определение м

СЕТЕВЫЕ СЛУЖБЫ. МОДЕЛЬ РАСПРЕДЕЛЕННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. БЕЗОПАСНОСТЬ ИНФОРМАЦИИ. БАЗОВЫЕ ФУНКЦИОНАЛЬНЫЕ ПРОФИЛИ. ПОЛНЫЕ ФУНКЦИОНАЛЬНЫЕ ПРОФИЛИ.
Сетевая служба — вид сервиса, предоставляемого сетью. Сервис — процесс обслуживания объектов. Сервис предоставляется пользователям, программам, системам, уровням, функциональ

Сетевая служба EDI
Сетевая служба EDI — сетевая служба обмена электронными данными. Технология EDI, именуемая также Сервисом электронных писем ELS, представляет собой стандартный и не зависимый от пла

Сетевая служба FTAM
Сетевая служба FTAM - сетевая служба, обеспечивающая управление файлами и доступ к ним. FTAM расположена на прикладном уровне, определена Международной Организацией Стандартов (МОС)

Сетевая служба JTM
Сетевая служба JTM — сетевая служба передачи заданий и управления их выполнением. JTM работает в соответствии со стандартами ISO и оперирует с так называемыми виртуальными заданиями

Сетевая служба NMS
Сетевая служба NMS — сетевая служба, выполняющая процессы управления сетью. NMS разработана Международной Организацией Стандартов (МОС) и располагается на прикладном уровне. Обеспеч

Сетевая служба ODA
Сетевая служба ODA — сетевая служба, обеспечивающая обработку и передачу документов. ODA располагается на прикладном уровне и определяет обмен документами (письмами, служебными запи

Модель распределенной обработки информации
Распределенная обработка данных — методика выполнения прикладных программ группой систем. Сущность DDP заключается в том, что пользователь получает возможность работать с сетевыми с

Технологии распределенных вычислений.
Программное обеспечение (ПО) организации распределенных вычислений называют программным обеспечением промежуточного слоя (Middleware). Новое направление организации распределенных вычислений в сетя

Распределенная среда обработки данных
(Distributed Computing Environment (DCE*)) — технология распределенной обработки данных, предложенная фондом открытого программного обеспечения. Она не противопоставляется другим те

Безопасность информации
Безопасность данных (data security) — концепция защиты программ и данных от случайного либо умышленного изменения, уничтожения, разглашения, а также несанкционированного использования.

Базовые функциональные профили
Функциональный профиль - иерархия взаимосвязанных протоколов, предназначенная для определенного круга задач обработки и передачи данных. В документах ISO и ITU определен широкий наб

Коллапсный функциональный профиль
Коллапсный функциональный профиль — псевдо-полный функциональный профиль, в котором отсутствует один либо несколько уровней. Коллапсным называют профиль, в котором функции отсутству

Открытая сетевая архитектура
Открытая сетевая архитектура — полный функциональный профиль, разработанный фирмой British Telecom.& British Telecom на всех семи уровнях использует в ONA (Open Network Architec

Тема 8.
Методы коммутации информации. Протоколы реализации 8.1 Коммутация. Коммутация каналов Когда, сняв телефонную трубку, абонент или компьютер набира

Применяемое оборудование
Маршрутизаторы Маршрутизатор (router) можно упрощенно рассматривать как некое устройство, обеспечивающее: · физическое подключение к себе каналов определен

Время реакции
Обычно в качестве временной характеристики производительности сети используется такой показатель как время реакции. Термин «время реакции» может использоваться в очень широком смысле, поэтом

Критерии, отличающиеся единицей измерения передаваемой информации
В качестве единицы измерения передаваемой информации обычно используются пакеты (или кадры, далее эти термины будут использоваться как синонимы) или биты. Соответственно, пропускная способность изм

Критерии, отличающиеся учетом служебной информации
В любом протоколе имеется заголовок, переносящий служебную информацию, и поле данных, в котором переносится информация, считающаяся для данного протокола пользовательской. Например, в кадре протоко

Критерии, отличающиеся количеством и расположением точек измерения
Пропускную способность можно измерять между любыми двумя узлами или точками сети, например, между клиентским компьютером 1 и сервером 3 из примера, приведенного на рисунке 1.2. При этом получаемые

Факторы, определяющие эффективность сетей
В качестве средств коммуникации наиболее часто используются витая пара, коаксиальный кабель, оптоволоконные линии. На каждом компьютере должна быть установлена сетевая плата. При выборе ти

Еthernet- кабель
Ethernet-кабель также является коаксиальным кабелем с волновым сопротивлением 50 Ом. Его называют еще толстый Ethernet (thick) или желтый кабель (yellow cable). Он использует 15-контактное стандарт

Показатели трех типовых сред для передачи.
Показатели Среда передачи данных     Двух жильный кабель - витая пара Коаксиальный кабель

Ошибки в кадрах, связанные с коллизиями
Ниже приведены типичные ошибки, вызванные коллизиями, для кадров протокола Ethernet: - Локальная коллизия (LocalCollision). Является результатом одновременной передачи двух или более узлов

Диагностика коллизий
Средняя интенсивность коллизий в нормально работающей сети должна быть меньше 5%. Большие всплески (более 20%) могут быть индикатором кабельных проблем. Если интенсивность коллизий больше 10%, то у

Ошибки кадров Ethernet, связанные с длиной и неправильной контрольной суммой
- Укороченные кадры (Shortframes). Это кадры, имеющие длину, меньше допустимой, то есть меньше 64 байт. Иногда этот тип кадров дифференцируют на два класса - просто короткие кадры (short), у которы

Ошибки кадров Ethernet в стандарте RMON
Стандарт RMON определяет следующие типы ошибок кадров Ethernet: etherStatsCRCAlignErrors -общее число полученных пакетов, которые имели длину (исключая преамбулу) между 64

Типичные ошибки при работе протоколов
Кроме явных ошибок в работе сети, проявляющихся в появлении кадров с некорректными значениями полей, существуют ошибочные ситуации, являющиеся следствием несогласованной установки параметров проток

Несоответствие форматов кадров Ethernet
Ethernet - одна из самых старых технологий локальных сетей, имеющая длительную историю развития, в которую внесли свой вклад различные компании и организации. В результате этого существует нескольк

Потери пакетов
Регулярные потери пакетов или кадров могут иметь очень тяжелые последствия для локальных сетей, так как протоколы нижнего уровня (канальные протоколы) рассчитаны на качественные кабельные каналы св

Несуществующий адрес и дублирование адресов
Отправка пакета по несуществующему адресу естественно не может привести к нормальному взаимодействию узлов в сети. Несуществующие адреса могут появиться в сети только в том случае, когда они хранят

Превышение значений тайм-аута и несогласованные значения тайм-аутов
Тайм-ауты - очень важные параметры многих протоколов, так как их непредвиденное превышение обычно приводит к серьезным последствиям. Например, превышение тайм-аута может привести к разрыву логическ

Сетевые операционные системы
Системные программные средства, управляющие процессами в компьютерных сетях, объединенные общей архитектурой, определенными коммуникационными протоколами и механизмами взаимодействия вычислительных

Требования к сетевым операционным системам.
Различают следующие системные требования: единая системная архитектура. обеспечение требуемого высокого уровня прозрачности. высокоуровневая и высоконадежная файлов

Сети с централизованным управлением
В таких сетях сетевая операционная система, называемая также ОС сервера, обеспечивает выполнение базовых функций, таких, как поддержка файловой системы, планирование задач, управление памятью. Сете

Сети с децентрализованным управлением или одноранговые сети
В сети с децентрализованным управлением объединяются компьютеры, каждый из которых может быть и сервером, и клиентом. В такой сети любой компьютер работает под управлением обычной дисковой ОС, а дл

Прикладные программы сети
Важным требованием к большинству современных пакетов прикладных программ (ППП) является их способность работать в условиях локальных сетей, то есть выполнять функции прикладных программ сети (ППС).

Специализированные программные средства
В эпоху internet требуется огромное количество специализированных программных средств, выполняющих конкретные задачи. В качестве при­меров можно привести: · браузеры (Internet Explorer, Op

Терминальное оборудование
Терминальное оборудование ¾ основная часть абонентской системы, выполняющая прикладные процессы и, возможно, часть функций области взаимодействия. Главной задачей терминально

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги