рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Напруження, що виникають у металі при навантаженні. Пружна та пластична деформація. Вплив пластичної деформації на структуру і властивості металу

Напруження, що виникають у металі при навантаженні. Пружна та пластична деформація. Вплив пластичної деформації на структуру і властивості металу - раздел Философия, Тема I. КРИСТАЛІЧНА БУДОВА МЕТАЛІВ Якщо На Деталь Прикладати Зовнішню Силу, То В Матеріалі Деталі Виникають Напр...

Якщо на деталь прикладати зовнішню силу, то в матеріалі деталі виникають напруги. Напруга - це сила, яка діє на одиницю площі перерізу деталі.

При прикладанні на зразок сили F, що розтягує його (рис. 4.1), у матеріалі зразка виникає напруга р, яку можна розкласти на нормальну(s) та дотичну (t) складові. Зростання нормальних напруг призводить до крихкого руйнування. Пластичну деформацію спричиняють дотичні напруги. Деформація може бути пружною, що зникає та пластичною, яка залишається після зняття навантаження.

 
 

Рис.4.1. Схема розтягання зразка

 
 

Рис.4.2. Діаграма розтягу

На діаграмі розтягу, яка показує залежність між напругою та деформацією (рис. 4.2), можна виділити дві ділянки, в межах яких ха- рактер цієї залежності різко відрізняється один від одного. Наділянці ОА, де спостерігається пропорційність між напругою та деформацією (прямолінійна ділянка кривої), має місце пружна деформація. Вище точки А порушується пропорційність між напругою s і деформацією e. Напруга вже викликає не тільки пружну, але й залишкову, пластичну деформацію, величина якої характеризується відрізком від штрихової лінії до початку координат (а0).

При пружній деформації під дією зовнішньої сили змінюється відстань між атомами в кристалічній гратці, а при знятті цієї сили атоми повертаються у вихідні положення внаслідок дії сил міжатомної взаємодії і деформація зникає.

Залежність між пружною деформацією e і напругою s виражається законом Гука:

σ = E∙ε, (4.1)

де Е = tg α - коефіцієнт, який називається модулем пружності.

Модуль пружності Е є важливою характеристикою металів, яка визначає міцність зв'язків між атомами в твердому тілі. Вона є анізотропною величиною і залежить від відстані між атомами у відповідних напрямках кристалічної гратки. Наприклад, для заліза в напрямку [100] модуль пружності Е становить 132000 МПа, а в напрямку [111] - 271000 МПа.

Пластична деформація є зовсім іншим, значно складнішим процесом. Вона може відбуватися двома шляхами: ковзанням або двійникуванням.

При ковзанні має місце взаємний зсув частин кристала по певним кристалографічним площинам і напрямкам, які утворюють системи ковзання. Площини та напрямки ковзання звичайно характеризуються підвищеною щільністю упакування атомів. Тому метали з ГЦК і ОЦК гратками мають значно більше систем ковзання і, відповідно, більш високу пластичність, ніж метали з ГЩУ граткою.

Механізм пластичної деформації. Раніше припускали, що при ковзанні одна частина кристала зсувається відносно іншої частини по площині ковзання на цілу кількість періодів гратки. Але розрахунки, які були виконані вперше Я.І.Френкелем на основі такого припущення, встановили величину критичної дотичної зсувної напруги τ для заліза приблизно на рівні 13300 МПа, що на декілька порядків більше дійсної зсувної напруги, яка для м'якого заліза становить близько 150 МПа. Отже, розглянутий механізм пластичної деформації не відповідає дійсності.

В основу сучасної теорії пластичної деформації були покладені наступні положення:

- ковзання розповсюджується по площині зсуву послідовно, а не одночасно;

- ковзання починається від місць порушень кристалічної гратки, які вже існують або виникають у кристалі при його навантаженні.

На рис.4.3 зображена схема дислокаційного механізму пластичної деформації.

У рівноважному стані (рис.4.3,а) екстраплощина РQ розміщується симетрично між сусідніми атомними площинами і дислокація нерухома. При навантаженні під дією напруги t екстраплощина зміщується ліворуч (Р¢Q¢) і одночасно нижня частина площини SR зміщується праворуч (S¢R¢). Відстань між атомними рядами Q¢ і R¢ стає меншою за відстань між рядами R¢ і М¢ . Тому зв'язок між рядами R¢ і М¢ розривається, а встановлюється між рядами Q¢ і R¢, тобто дислокація змішується на одну міжатомну відстань. Подальша дія напруги t призведе до подальшого руху дислокації (рис.4.3, б) і в кінцевому підсумку до її виходу із кристала і, як результат цього, верхня частина кристала зміщується відносно нижньої на один період гратки. Важливо при цьому відмітити, що для переміщення дислокації на один період необхідно одночасно розривати зв'язок тільки між двома рядами атомів, а не між усіма атомами, які розміщені вище та нижче площини ковзання, що, очевидно, можливо здійснити при значно меншому значенні зсувної напруги.

 

Рис.4.3. Схема дислокаційного механізму пластичної деформації

 

Приблизний розрахунок критичної зсувної напруги τкр при дислокаційному механізмі пластичної деформації можна виконати за формулою Пайерлса-Набарро:

(4.2)

де G - модуль дотичної пружності, Па (МПа); m - коефіцієнт Пуассона; а – відстань між атомними площинами, в яких відбувається ковзання, м; b - міжатомна відстань у напрямку ковзання (вектор Бюргерса дислокації), м.

Результати розрахунків τкр за формулою (4.2) близькі до величин, що спостерігаються на практиці. Це свідчить про те, що дислокаційний механізм пластичної деформації відповідає дійсності.


Деформація двійникуванням здійснюється також шляхом зсуву однієї частини кристала по певним кристалографічним площинам. При двійникуванні частини кристала зміщуються таким чином, що вони стають дзеркальними відбитками відносно площини двійникування. Величина деформації при двійникуванні мала. Тому основним видом деформації металів є деформація ковзанням.

а б в г

 

Рис.4.4. Схема пластичної деформації моно- (а, б) і полікристалів (в, г):а – зерно металу до деформування (e=0); б – зерно металу після деформування (e>0); в – мікроструктура полікристала до деформування (e=0); г – мікроструктура полікристала після деформування

(текстура деформації) (e>0).

 

 

При пластичному деформуванні полікристалічного тіла в зернах металу відбуваються багаточисельні зсуви за дислокаційним механізмом. Зі збільшенням обтискання хаотично орієнтовані кристали повертаються осями найбільшої міцності вздовж напрямку деформування, в результаті чого утворюється текстура деформації (рис.4.4, г).

 
 

Зерна заліза після обтискання на 90% мають довжину приблизно 70 мкм при товщині близько 3 мкм. Зі збільшенням ступеня деформації підвищується міцність і зменшується пластичність металу (рис.4.5) Рис.4.5. Залежність міцності (σв), твердості (HRB) та пластичності (δ) металу від ступеня деформації (e)

Зміцнення металу при холодній пластичній деформації називається наклепом. Зміна властивостей металу при пластичному деформуванні пов'язана зі збільшенням густини дислокацій ρ, яка може досягати значень до 1012 см-2. Зв'язок між границею текучості та густиною дислокацій ρ описується залежністю:

σт = σ0 + αGb√ρ , (4.3)

де – напруга зсуву до зміцнення (після відпалу); a - коефіцієнт, який залежить від типу кристалічної гратки; G – модуль зсуву; b - вектор Бюргерса.

Наклеп металу супроводжується зміною також інших фізико-хімічних властивостей: знижується корозійна стійкість, підвищується електричний опір. У сплавів на основі заліза підвищується коерцитивна сила, знижується магнітна проникність.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Тема I. КРИСТАЛІЧНА БУДОВА МЕТАЛІВ

Тема ПЛАСТИЧНА ДЕФОРМАЦІЯ ТА МЕХАНІЧНІ... ВЛАСТИВОСТІ МЕТАЛІВ І СПЛАВІВ Напруження що... Вплив нагріву деформованого металу на його структуру Та...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Напруження, що виникають у металі при навантаженні. Пружна та пластична деформація. Вплив пластичної деформації на структуру і властивості металу

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Загальна характеристика металів
З відомих у даний час більш як 109 елементів близько 80 є металами, яким у твердому і почасти в рідкому станах властиві: 1) високі тепло- і електропровідність; 2) позит

Електронна будова атома
Характерні властивості, які відрізняють метали від інших елементів, визначаються електронною будовою їх атомів. Число електронів у електрично нейтральному атомі будь-якого елемента дорівнює його по

Електронна будова атома
Характерні властивості, які відрізняють метали від інших елементів, визначаються електронною будовою їх атомів. Число електронів у електрично нейтральному атомі будь-якого елемента дорівнює його по

Атомно-кристалічна структура металів
Під атомно-кристалічною структурою розуміють взаємне розміщення атомів у кристалі. Кристал складається з атомів (іонів), розміщених у певному порядку, який періодично повторюється у трьох вимірах.

Анізотропія властивостей металів.
Щільність розташування атомів по різноманітних площинах (ретикулярна щільність) неоднакова. Так, площині (100) в ОЦК-гратці належить лише 1 атом (1/4х4), площині ромбічного додека

Дефекти кристалічної будови металів
У будь-якому реальному кристалі завжди є різноманітні дефекти – зони кристалу, в яких порушено правильне розташування атомів. За геометричними ознаками дефекти кристалічної будови розділяють на

Методи дослідження структури
Чисті метали у звичайному структурному стані мають низьку міцність і у більшості випадків не забезпечують необхідних властивос-

Первинна кристалізація металів
Перехід металу з рідкого стану у твердий (кристалічний) називається кристалізацією. Це відбувається в умовах, коли система переходить до термодинамічно більш стійкого стану з меншою вільною

Будова металевого злитка
Кристали, що утворюються при затвердінні металу, можуть мати різну форму в залежності від швидкості охолодження, характеру та кількості домішок. Найчастіше в процесі кристалізації утворюються розга

Поліморфні перетворення
Багато металів, в залежності від температури, можуть існувати в різних кристалічних формах (модифікаціях). У результаті поліморфного перетворення атоми кристалічного тіла, що мають гратки одного ти

Основні поняття та визначення. Типи сплавів
Сплавами називаються речовини, які отримують сплавленням двох або декількох металів чи металів і неметалів. Крім сплавлення сплави отримують також спіканням, електролізом тощо. Роль

Основні типи діаграм стану подвійних сплавів
Діаграма стану сплавів, компоненти яких не розчиняються один в одному в твердому стані та не утворюють хімічних сполук. Діаграма стану таких сплавів наведена на рис.3.1. На цій діа

Зв’язок між типом діаграми стану, складом і властивостями сплавів
Користуючись діаграмами стану, можна визначити перетворення, які відбуваються у сплавах даної системи в залежності від температури і хімічного складу, фази та структурні складові, які при цьому утв

Та властивості
Пластична деформація приводить метал до структурно нестійкого стану з високим рівнем термодинамічного потенціалу. Тому пластично деформований метал буде прагнути до зменшення змін, що виникають при

Механічні властивості металів і сплавів
Механічні властивості металів характеризують їх поведінку під дією зовнішніх навантажень. Вони визначаються експериментально з використанням стандартних методик і, у більшості випадків, стандартних

Теоретична і реальна міцність металів та шляхи її підвищення
Підвищення міцності (σв, σ0,2) та опору втомленості (σ-1) металів і сплавів при збереженні достатньо високої пластичності (δ, ψ), в’язкості (КСU, KC

Характерні точки діаграми стану залізо-вуглець
Метастабільна рівновага Стабільна рівновага Точка t, 0С С, % Точка t,

Вуглецеві сталі
Основною продукцією чорної металургії є сталь, при цьому приблизно 90% виготовляється вуглецевої сталі і 10% - легованої. Таким чином, основним металевим матеріалом промисловості є вуглецева сталь.

Вплив постійних домішок на властивості сталі
Постійними домішками в сталі є кремній (£0,37%), марганець (£0,8%), сірка (£0,06%), фосфор (£0,07%). Марганець і кремній вводять у сталь для розкислення при її випл

Класифікація та маркування вуглецевих сталей
Вуглецеві сталі класифікують за кількома ознаками: за рівноважною структурою, за хімічним складом, за ступенем розкислення, за якістю та за призначенням. За рівноважною структурою вуглецев

Вплив хімічного складу і швидкості охолодження на структуру і властивості чавуну.
Чавун – це багатокомпонентний сплав, до складу якого, крім Fe i C, входять Si, Mn, P, S. Для цілеспрямованого впливу на процес отримання білих або сірих чавунів необхідн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги