рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Характерні точки діаграми стану залізо-вуглець

Характерні точки діаграми стану залізо-вуглець - раздел Философия, Тема I. КРИСТАЛІЧНА БУДОВА МЕТАЛІВ Метастабільна Рівновага Стабільна Рівн...

Метастабільна рівновага Стабільна рівновага
Точка t, 0С С, % Точка t, 0С С, %
A 0,00 А 0,00
B 0,50 B 0,50
C 4,30 C' 4,26
D ~1260 6,67 N 0,00
N 0,00 H 0,10
H 0,10 J 0,16
J 0,16 E' 2,11
E 2,14 G 0,00
F 6,67 S' 0,70
G 0,00 P' 0,02
P 0,02 Q 0,006
S 0,80      
K 6,67      
Q 0,006      

Основними компонентами залізовуглецевих сплавів є залізо і вуглець.

Залізо – це сріблясто-сірий метал з атомним номером 26, атомним радіусом 0,127нм, атомною масою 55,85, густиною 7860 кг/м3 та температурою плавлення 1539±50С. Залізо - поліморфний метал. В інтервалі температур 1539…13920С існує δ–залізо з ОЦК-граткою і періодом 0,293 нм, в інтервалі температур 1392…9110С – γ–залізо з ГЦК-граткою і періодом 0,364 нм, а при температурах, нижчих за 9110С – α–залізо з ОЦК-граткою з періодом 0,286 нм. При температурі 7680С (точка Кюрі) залізо зазнає магнітне перетворення - нижче цієї температури залізо феромагнітно, а вище – парамагнітно.Технічно чисте залізо має такі механічні властивості: σв=250МПа; σт = 120 МПа; 800НВ; δ = 50% і ψ = 85%.

Вуглець – це неметалевий елемент з атомним номером 6, атомним радіусом 0,077нм, атомною масою 12,011 густиною 2500кг/м3 та температурою плавлення 35000С. Вуглець існує в двох модифікаціях: графіту і алмазу. У звичайних умовах він знаходиться у вигляді графіту, але може існувати і у вигляді метастабільного алмазу. Графіт має гексагональну шарувату гратку, де відстань між шарами становить 0,34 нм, а між атомами у шарі – 0,14 нм. Завдяки шаруватості міцність графіту невелика – σв=20 МПа (при 200С). Алмаз має складну кубічну гратку з періодом 0,1545 нм, у якому діють надзвичайно сильні ковалентні міжатомні зв’язки, що обумовлює високу твердість алмазу.

Вуглець розчиняється у залізі в рідкому та твердому станах, а також утворює з залізом хімічну сполуку Fe3С (цементит), а у високовуглецевих сплавах може існувати і у вигляді графіту.

Основними фазами, які утворюються в залізовуглецевих сплавах, є необмежений рідкий розчин вуглецю в залізі (Р), ферит (Ф), аустеніт (А), цементит (Ц) і графіт (Г).

Ферит – це твердий розчин проникнення вуглецю в α- або d–залізі. Максимальна розчинність вуглецю в d–залізі становить 0,1% при 14990С (т.Н), в α–залізі – 0,02% при 7270С (т.Р), а при кімнатній температурі вона зменшується до 0,006%. Така низька розчинність вуглецю в Feα(Feδ) обумовлена малими розмірами пор в ОЦК гратці. Ферит – м’яка , пластична фаза з такими механічними властивостями: - sв=250МПа; sт=120МПа; δ=50% і Ψ=80%; КСU=2,5 МДж/м2; 800…900НВ. Області існування на діаграмі Fe-Fe3C: чистого δ–фериту – АНN, α–фериту – GPQ.

Аустеніт – це твердий розчин проникнення вуглецю в γ – залізі. Максимальна розчинність вуглецю в γ – залізі значно вище, ніж у Feα і становить 2,14% при 11470С, що пов’язано з більшими розмірами пор в ГЦК гратці. При зниженні температури розчинність вуглецю в γ–залізі зменшується і при температурі 7270С становить 0,8%. Аустеніт більш тверда (1700…2000НВ) і міцна (sв = 500…800МПа), ніж ферит, але дуже пластична фаза. Область існування чистого аустеніту на діаграмі Fe-Fe3C - NJESG.

Цементит – це хімічна сполука заліза з вуглецем, карбід заліза Fe3C. Температура плавлення приблизно 12600С. Труднощі з визначенням цієї температури пов’язані з нестійкістю цементиту при нагріванні, тобто його розпадом з утворенням аустеніту і графіту. Цементит при температурах нижче 2100С має слабкі феромагнітні властивості, а при цій температурі (при нагріванні) втрачає феромагнетизм. Цементит має складну орторомбічну гратку, в елементарній комірці якої розміщені 12 атомів заліза і 4 атоми вуглецю. Цементит має високу твердість (~8000НВ) і крихкість. На діаграмі стану Fe-Fe3C цементиту відповідає вертикальна лінія DFKL.

Графіт – це вуглець, який виділяється у високовуглецевих сплавах у вільному стані при повільному охолодженні (за стабільною діаграмою стану “залізо – графіт”).

 

5.2. Процеси, які відбуваються при температурах,

які відповідають лініям діаграми стану “залізо – цементит”

На діаграмі Fe-Fe3C точка А (рис.5.1.) відповідає температурі плавлення чистого заліза (15390С), точка N (13920С) - температурі поліморфного Fed «Feg-перетворення, G (9110С) - поліморфного Feg« Fea-перетворення, D (12600С) - температурі плавлення цементиту. Точки Н і Р характеризують граничну концентрацію вуглецю відповідно у високо - та низькотемпературному фериті, а точка Е - в аустеніті.

Перетворення в залізовуглецевих сплавах відбуваються як при твердінні рідкої фази (первинна кристалізація), так і в твердому стані (вторинна кристалізація). Первинна кристалізація відбувається в інтервалі температур між лініями ліквідус (АВСD) і солідус (АНJECF). Вторинна кристалізація пов'язана з поліморфним перетворенням заліза і змінною розчинністю вуглецю в g- та a-залізі.

Лінії діаграми стану залізо-цементит мають такі позначення та фізичний зміст.

Лінія АВСD - лінія ліквідус - визначає температуру, при якій починається процес первинної кристалізації із рідкого сплаву, при цьому лінія АВ показує температуру початку кристалізації d-фериту, ВС - аустеніту, СD - цементиту первинного (ЦІ).

Лінія АНJECF - лінія солідус - визначає температуру, при якій закінчується процес первинної кристалізації, при цьому лінія АН показує температуру кінця кристалізації d-фериту, JE - аустеніту. Лінія НJВ - це лінія перитектичного перетворення, суть якого полягає в тому, що d-ферит, який утворився до цієї температури, реагує з рідким сплавом, що залишився, утворюючи при цьому аустеніт: РВ + ФН ® АJ.

Якщо сплав містить 0,16%С, то рідка фаза і d-ферит повністю витрачаються і після закінчення перитектичного перетворення залишається тільки аустеніт, а якщо сплав містить понад 0,1 і до 0,16 чи понад 0,16 і до 0,5%С, то в надлишку залишається відповідно d-ферит чи рідка фаза, тобто фазовий склад при завершенні перитектичного перетворення сплавів, що містять від 0,1 до 0,16%С, - d-ферит + аустеніт, а сплавів з вмістом вуглецю від 0,16 до 0,5% - аустеніт + рідка фаза.

Лінія ЕСF - це лінія евтектичного перетворення, суть якого полягає в тому, що рідка фаза, що містить 4,3%С, кристалізується з утворенням механічної суміші кристалів аустеніту, що містить 2,14%С, і цементиту:

РC ® АЕ +. ЦF. (5.1)

Евтектична суміш аустеніту і цементиту називається ледебуритом. Ледебурит містить 4,3%С, має високу твердість (> 6000НВ) і крихкість. Тому присутність ледебуриту в структурі сплавів, що містять 2,14…6,67%С, обумовлює їх нездатність до обробки тиском і утруднює обробку різанням.

Лінія NH - це лінія, яка відповідає температурі початку поліморфного (d-Ф ® А) - перетворення, а лінія NJ - кінця цього процесу.

Лінія GS - це лінія, яка відповідає температурі початку поліморфного (А ® a-Ф) - перетворення, а лінія - кінця цього процесу.

Лінія ЕS - це лінія максимальної розчинності вуглецю в g-залізі в залежності від температури, лінія, що відповідає температурі початку виділення надлишкового вуглецю з аустеніту внаслідок зменшення його розчинності в g-залізі при зниженні температури від 2,14% при 11470С до 0,8% при 7270С, у вигляді цементиту, який називають вторинним (ЦІІ).

Лінія РQ - це лінія максимальної розчинності вуглецю в a-залізі, лінія, яка відповідає температурі початку виділення надлишкового вуглецю з a-фериту у вигляді третинного цементиту (ЦІІІ). Надлишок вуглецю в a-фериті з¢являється при охолодженні внаслідок зменшення розчинності вуглецю в a-залізі при зниженні температури з 0,02% при 7270С до 0,006% при 200С.

Лінія PSK - це лінія евтектоїдного перетворення, суть якого полягає у перетворенні аустеніту, що містить 0,8%С, на суміш двох інших твердих фаз: a-фериту з вмістом 0,02%С і цементиту:

АS ® ФP +. ЦK. (5.2)

Ця евтектоїдна суміш фериту і цементиту отримала назву перліт. Назва структури пов'язана з тим, що під мікроскопом на травленому мікрошліфі вона має перламутровий перелив. Перліт містить 0,8%С, найчастіше має пластинчасту будову і є відносно міцною структурною складовою: σв=800…900МПа; σ0.2= 450МПа; δ£ 16%; ~ 2000НВ.

Евтектоїдне перетворення відбувається також і з аустенітом ледебуриту. Тому ледебурит при температурах нижче 7270С складається з перліту і цементиту і іноді такий ледебурит називають перетвореним (Лп).

Виходячи з процесів, що відбуваються при температурах, що відповідають лініям діаграми стану залізо-цементит, усі залізовуглецеві сплави можна поділити на дві групи:

1) сплави, що містять до 2,14%С і які в результаті первинної кристалізації отримують пластичну аустенітну структуру;

2) сплави, що містять понад 2,14%С і які після первинної кристалізації отримують тверду і крихку ледебуритну структуру з надлишковими аустенітом чи цементитом або без них.

Ця різниця у структурі після первинної кристалізації обумовлює суттєву відмінність у технологічних і механічних властивостях цих двох груп сплавів. Перша група сплавів має достатньо високу пластичність, що дає змогу виготовляти деталі з них пластичним деформуванням. У другій групі сплавів наявність у структурі евтектики (ледебуриту) робить їх нековкими, але вони мають низьку температуру плавлення і їх використовують як ливарний матеріал.

Залізовуглецеві сплави, що містять до 2,14%С, називають сталями, а понад 2,14%С - чавунами.

 

– Конец работы –

Эта тема принадлежит разделу:

Тема I. КРИСТАЛІЧНА БУДОВА МЕТАЛІВ

Тема ПЛАСТИЧНА ДЕФОРМАЦІЯ ТА МЕХАНІЧНІ... ВЛАСТИВОСТІ МЕТАЛІВ І СПЛАВІВ Напруження що... Вплив нагріву деформованого металу на його структуру Та...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Характерні точки діаграми стану залізо-вуглець

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Загальна характеристика металів
З відомих у даний час більш як 109 елементів близько 80 є металами, яким у твердому і почасти в рідкому станах властиві: 1) високі тепло- і електропровідність; 2) позит

Електронна будова атома
Характерні властивості, які відрізняють метали від інших елементів, визначаються електронною будовою їх атомів. Число електронів у електрично нейтральному атомі будь-якого елемента дорівнює його по

Електронна будова атома
Характерні властивості, які відрізняють метали від інших елементів, визначаються електронною будовою їх атомів. Число електронів у електрично нейтральному атомі будь-якого елемента дорівнює його по

Атомно-кристалічна структура металів
Під атомно-кристалічною структурою розуміють взаємне розміщення атомів у кристалі. Кристал складається з атомів (іонів), розміщених у певному порядку, який періодично повторюється у трьох вимірах.

Анізотропія властивостей металів.
Щільність розташування атомів по різноманітних площинах (ретикулярна щільність) неоднакова. Так, площині (100) в ОЦК-гратці належить лише 1 атом (1/4х4), площині ромбічного додека

Дефекти кристалічної будови металів
У будь-якому реальному кристалі завжди є різноманітні дефекти – зони кристалу, в яких порушено правильне розташування атомів. За геометричними ознаками дефекти кристалічної будови розділяють на

Методи дослідження структури
Чисті метали у звичайному структурному стані мають низьку міцність і у більшості випадків не забезпечують необхідних властивос-

Первинна кристалізація металів
Перехід металу з рідкого стану у твердий (кристалічний) називається кристалізацією. Це відбувається в умовах, коли система переходить до термодинамічно більш стійкого стану з меншою вільною

Будова металевого злитка
Кристали, що утворюються при затвердінні металу, можуть мати різну форму в залежності від швидкості охолодження, характеру та кількості домішок. Найчастіше в процесі кристалізації утворюються розга

Поліморфні перетворення
Багато металів, в залежності від температури, можуть існувати в різних кристалічних формах (модифікаціях). У результаті поліморфного перетворення атоми кристалічного тіла, що мають гратки одного ти

Основні поняття та визначення. Типи сплавів
Сплавами називаються речовини, які отримують сплавленням двох або декількох металів чи металів і неметалів. Крім сплавлення сплави отримують також спіканням, електролізом тощо. Роль

Основні типи діаграм стану подвійних сплавів
Діаграма стану сплавів, компоненти яких не розчиняються один в одному в твердому стані та не утворюють хімічних сполук. Діаграма стану таких сплавів наведена на рис.3.1. На цій діа

Зв’язок між типом діаграми стану, складом і властивостями сплавів
Користуючись діаграмами стану, можна визначити перетворення, які відбуваються у сплавах даної системи в залежності від температури і хімічного складу, фази та структурні складові, які при цьому утв

Напруження, що виникають у металі при навантаженні. Пружна та пластична деформація. Вплив пластичної деформації на структуру і властивості металу
Якщо на деталь прикладати зовнішню силу, то в матеріалі деталі виникають напруги. Напруга - це сила, яка діє на одиницю площі перерізу деталі. При прикладанні на зразок сили F, що розтягує

Та властивості
Пластична деформація приводить метал до структурно нестійкого стану з високим рівнем термодинамічного потенціалу. Тому пластично деформований метал буде прагнути до зменшення змін, що виникають при

Механічні властивості металів і сплавів
Механічні властивості металів характеризують їх поведінку під дією зовнішніх навантажень. Вони визначаються експериментально з використанням стандартних методик і, у більшості випадків, стандартних

Теоретична і реальна міцність металів та шляхи її підвищення
Підвищення міцності (σв, σ0,2) та опору втомленості (σ-1) металів і сплавів при збереженні достатньо високої пластичності (δ, ψ), в’язкості (КСU, KC

Вуглецеві сталі
Основною продукцією чорної металургії є сталь, при цьому приблизно 90% виготовляється вуглецевої сталі і 10% - легованої. Таким чином, основним металевим матеріалом промисловості є вуглецева сталь.

Вплив постійних домішок на властивості сталі
Постійними домішками в сталі є кремній (£0,37%), марганець (£0,8%), сірка (£0,06%), фосфор (£0,07%). Марганець і кремній вводять у сталь для розкислення при її випл

Класифікація та маркування вуглецевих сталей
Вуглецеві сталі класифікують за кількома ознаками: за рівноважною структурою, за хімічним складом, за ступенем розкислення, за якістю та за призначенням. За рівноважною структурою вуглецев

Вплив хімічного складу і швидкості охолодження на структуру і властивості чавуну.
Чавун – це багатокомпонентний сплав, до складу якого, крім Fe i C, входять Si, Mn, P, S. Для цілеспрямованого впливу на процес отримання білих або сірих чавунів необхідн

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги