рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Контактные явления

Контактные явления - Лабораторная Работа, раздел Философия, Ремизов А.Н. Медицинская и биологическая физика 1. Контактная Разность Потенциалов. Законы Вольта. 2. Термоэлектриче...

1. Контактная разность потенциалов. Законы Вольта.

2. Термоэлектричество.

3. Термопара, ее использование в медицине.

4. Потенциал покоя. Потенциал действия и его распространение.

 

1. При тесном соприкосновении разнородных металлов между ними возникает разность потенциалов, зависящая только от их химического состава и температуры (первый закон Вольты).

Эта разность потенциалов называется контактной.

Для того, чтобы покинуть металл и уйти в окружающую среду, электрон должен совершить работу против сил притяжения к металлу. Эта работа называется работой выхода электрона из металла.

Приведем в контакт два различных металла 1 и 2, имеющих работу выхода соответственно A1 и A2, причем A1 < A2. Очевидно, что свободный электрон, попавший в процессе теплового движения на поверхность раздела металлов, будет втянут во второй металл, так как со стороны этого металла на электрон действует большая сила притяжения (A2 > A1). Следовательно, через контакт металлов происходит «перекачка» свободных электронов из первого металла во второй, в результате чего первый металл зарядится положительно, второй отрицательно. Возникающая при этом разность потенциалов создает электрическое поле напряженностью Е, которое затрудняет дальнейшую «перекачку» электронов и совсем прекратит ее, когда работа перемещения электрона за счет контактной разности потенциалов станет равна разности работ выхода:

или

(1)

Приведем теперь в контакт два металла с A1 = A2, имеющие различные концентрации свободных электронов n01>n02. Тогда начнется преимущественный перенос свободных электронов из первого металла во второй. В результате первый металл зарядится положительно, второй – отрицательно. Между металлами возникнет разность потенциалов , которая прекратит дальнейший перенос электронов. Возникающая при этом разность потенциалов определяется выражением:

, (2)

где k-постоянная Больцмана

В общем случае контакта металлов, различающихся и работой выхода и концентрацией свободных электронов к.р.п. из (1) и (2) будет равна

(3)

Легко показать, что сумма контактных разностей потенциалов последовательно соединенных проводников равна контактной разности потенциалов, создаваемой концевыми проводниками, и не зависит от промежуточных проводников.

.

Это положение называется вторым законом Вольты.

 

 

Если теперь непосредственно соединить концевые проводники, то существующая между ними разность потенциалов компенсируется равной по величине разностью потенциалов , возникающей в контакте 1 и 4. Поэтому к.р.п. не создает тока в замкнутой цепи металлических проводников, имеющих одинаковую температуру.

 

 

2. Термоэлектричество – это зависимость контактной разности потенциалов от температуры.

Составим замкнутую цепь из двух разнородных металлических проводников 1 и 2. Температуры контактов a и b будем поддерживать различными Тa> Tb. Тогда, согласно формуле (3), к.р.п. в горячем спае больше, чем в холодном:

В результате между спаями a и b возникает разность потенциалов

, называемая термоэлектродвижущей силой, а в замкнутой цепи пойдет ток I. Пользуясь формулой (3), получим

, или

(4)

Где для каждой пары металлов

3.Замкнутая цепь проводников, создающая ток за счет различия температуры контактов между проводниками, называется термопарой.

Из формулы (4) следует, что термоэлектродвижущая сила термопары пропорциональна разности температур спаев (контактов).

Формула (4) справедлива и для температур по шкале Цельсия:

(4’)

Термопарой можно измерить только разности температур. Обычно один спай поддерживается при 0ºС. Он называется холодным спаем. Другой спай называется горячим или измерительным.

Термопара обладает существенными преимуществами перед ртутными термометрами: она чувствительна, безинерционна, позволяет измерять температуру малых объектов, допускает дистанционные измерения.

Измерение предела температурного поля тела человека.

Считается, что температура тела человека постоянна, однако это постоянство относительно, поскольку в различных участках тела температура неодинакова и меняется в зависимости от функционального состояния организма.

Температура кожи имеет свою вполне определенную топографию. Самую низкую температуру (23-30º) имеют дистальные отделы конечностей, кончик носа, ушные раковины. Самая высокая температура – в подмышечной области, в промежности, области шеи, губ, щек. Остальные участки имеют температуру 31-33,5ºС.

У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием диагностики заболеваний методом построения профиля температурного поля с помощью контактных устройств: термопары и термометра сопротивления.

 

4. Поверхностная мембрана клетки не одинаково проницаема для разных ионов. Кроме того, концентрация каких-либо определенных ионов различна по разные стороны мембраны, внутри клетки поддерживается наиболее благоприятный состав ионов. Эти факторы приводят к появлению в нормально функционирующей клетке разности потенциалов между цитоплазмой и окружающей средой (потенциал покоя)

При возбуждении разность потенциалов между клеткой и окружающей средой изменяется, возникает потенциал действия, который распространяется в нервных волокнах.

Механизм распространения потенциала действия по нервному волокну рассматривается по аналогии с распространением электромагнитной волны по двухпроводной линии. Однако, наряду с этой аналогией существуют и принципиальные различия.

Электромагнитная волна, распространяясь в среде, ослабевает, так как ее энергия рассеивается, превращаясь в энергию молекулярно-теплового движения. Источником энергии электромагнитной волны является ее источник: генератор, искра и т.д.

Волна возбуждения не затухает, так как получает энергию из самой среды, в котрой она распространяется (энергия заряженной мембраны).

Таким образом, распространение потенциала действия по нервному волокну происходит в форме автоволны. Активной средой являются возбудимые клетки.

 

Примеры решения задач

1. При построении профиля температурного поля поверхности тела человека используется термопара с сопротивлением r1=4Ом и гальванометр с сопротивлением r2=80Ом; I=26мкА при разности температур спаев ºС. Чему равна постоянная термопары?

Решение:

Термоэдс, возникающая в термопаре, равна

(1) где термопары, -разность температур спаев.

По закону Ома для участка цепи где U принимаем как . Тогда

 

– Конец работы –

Эта тема принадлежит разделу:

Ремизов А.Н. Медицинская и биологическая физика

Ремизов А Н Медицинская и биологическая физика М г... Блохина М Е Эссаулова И А и др Руководство к лабораторным работам по... Кумыков В К Захохов Г М Физические методы в функциональной диагностике Нальчик КБГУ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Контактные явления

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Колебания и волны
Гармонический осциллятор. Колебательные системы в биологии и медицине. Механические волны, их уравнение. Вектор Умова. Ультразвук, его применение в медицине. Эффект Доплера,

Колебательные системы в биологии и медицине
Большинство процессов, анализ которых дает основной объем диагностической информации, имеют колебательный характер. В технике это механические, электромагнитные и др. виды колебаний. В биологии и м

Механические волны
Механической волной называют механические возмущения, распространяющиеся в пространстве и несущие энергию. Уравнение волны выражает зависимость смещения колебательной точки, участвующей в

Ультразвук
Природа и свойства. УЗ-механические колебания и волны с частотой от 20кГц до 1010ГЦ. Распространение УЗ в среде сопровождается его поглощением. Чем больше поглощение УЗ, тем меньш

Эффект Доплера
Его суть заключается в изменении частоты звука, воспринимаемого наблюдателем, вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота о

Течение и свойства жидкостей
1. Идеальная жидкость. Основные определения. Движение идеальной жидкости. Уравнение неразрывности. Уравнение Бернулли. 2. Движение вязкой жидкости. Уравнение Ньютона. Формула Пуазейля.

Формула Пуазейля
Наибольшей скоростью обладают частицы, движущиеся вдоль оси трубы; самый близкий к трубе слой жидкости неподвижен. Для установления зависимости

Электростатика
1. Взаимодействие электрических зарядов в вакууме. Закон Кулона. Электрическое поле и его напряженность. Силовые линии электрического поля. 2. Электрический диполь. Поле диполя. 3

Работа перемещения заряда в электрическом поле. Потенциал.
На всякий заряд в электрическом поле действует сила, которая может перемещать этот заряд. Определить работу А перемещения точечного положительного заряда q из точки О в точку n, совершаемую силами

Электромагнетизм
1. Природа магнетизма. 2. Магнитное взаимодействие токов в вакууме. Закон Ампера. 3. Напряженность магнитного поля. Формула Ампера. Закон Био-Савара-Лапласа. 4. Диа-, пар

Диамагнитные, парамагнитные и ферромагнитные вещества. Магнитная проницаемость и магнитная индукция.
Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, т.е. намагничиваются и поэтому изменяют внешнее поле. При этом одни вещества ослабляют внешнее поле, а другие усиливают ег

Лекция №6
1. Действие магнитного поля на проводник с током 2. Движение заряженных частиц в электрическом поле. 3. Движение заряженных частиц в магнитном поле. 4. Электромагнитные с

Частица в электрическом поле
Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электр

Лекция №7
1. Электромагнитная индукция. Закон Фарадея. Правило Ленца. 2. Взаимная индукция и самоиндукция. Энергия магнитного поля. 3. Переменный ток. Работа и мощность переменного тока.

Электрические колебания и электромагнитные волны
1. Электромагнитные волны 2. Закрытый колебательный контур.Формула Томсона. 3. Открытый колебательный контур. Электромагнитные волны. 4. Шкала электромагнитных волн. Клас

Эндоскопическая аппаратура и ее применение в клинической практике.
Эндоскопия-метод исследования полых органов и полостей тела с помощью специального прибора-эндоскопа, который вводится в организм через естественные отверстия или произведенные под наркозом небольш

Волновые свойства света
1. Интерференция света. 2. Дифракция света. Разрешающая способность оптических приборов. 3. Дифракция от одной щели. Дифракционные спектры. Дифракционная решетка.  

Лекция №11
1. Поляризация света. Закон Малюса. 2. Вращение плоскости поляризации. Оптически активные вещества.   1. Свет, излучаемый отдельным атомом, представ

Квантовые свойства света. Тепловое излучение тел, его законы.
Из всего многообразия электромагнитных излучений, видимых и невидимых человеческим глазом, можно выделить одно, которое присуще всем телам. Это излучение нагретых тел, или тепловое излучение. Оно в

Строение атома.
В 1911г. Резерфорд предложил ядерную модель атома, согласно которой весь положительный заряд и почти вся масса (>99,94%) атома сосредоточены в атомном ядре, размер которого ничтожно мал (~10

Дискретность энергетических состояний атома. Постулаты Бора.
Линейчатый характер спектров излучения и поглощения атомов свидетельствует о том, что атом может излучать (поглощать) энергию не в любых количествах, а только вполне определенными порциями (квантам

Квантовая теория строения атома водорода.
В атоме водорода вокруг ядра (протона), несущего заряд e, движется один электрон. Ядро можно считать неподвижным, поскольку его масса в 1840 раз больше массы электрона; орбиты электрона в первом пр

Рентгеновское излучение, его использование в медицине
1. Природа и свойства рентгеновского излучения. Закон Мозли. Интенсивность Р.И. 2. Взаимодействие рентгеновского излучения с веществом. Эффект Комптона.Закон Бугера. 3. Использова

Использование Р.И. в медицинской практике
3.1. Рентгеновская диагностика Рентгеновская диагностика основана на избирательном поглощении тканями и органами рентгеновского излучения. Рентгеноскопия. При рентгеноскопи

Лазерное излучение, его использование в медицине.
1. Оптические квантовые генераторы (ОКГ) 2. Природа и свойства лазерного излучения. 3. Воздействие лазерного излучения на организм. 4. Использование лазера в медицине.

Использование лазера в медицине
Высокоэнергетические лазеры применяются в качестве лазерного скальпеля в онкологии. При этом достигается рациональное иссечение опухоли с минимальным повреждением окружающих тканей, причем операцию

Магнито-резонансные явления, их применение в медицине.
1. Расщепление энергетических уровней в магнитном поле. Эффект Зеемана. 2. Резонансные методы исследования вещества. 3. Магнитный резонанс. 4. Электронный парамагнитный р

Магнитный резонанс
Если облучать вещество переменным э/м полем, то при некоторой частоте будет происходить резонансное поглощение энергии э/м поля, которое можно измерить экспериментально. На практике удобнее частоту

Основы ядерной физики. Понятия ядерной медицины.
1. Общие сведения об атомных ядрах. Изотопы. 2. Искусственная радиоактивность 3. Природа радиоактивного излучения. Альфа-, бета- и гамм-лучи. 4. Законы радиоактивного рас

Биологическое действие радиационного излучения на организм.
Под действием ионизирующих излучений происходят химические превращения вещества, получившие название радиолиза. В процессе воздействия ионизирующего излучения на живой организм образуются возбужден

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги