рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теплопередача

Теплопередача - раздел Философия, Химическая технология В Основе Приближенных Расчетов Процессов Теплообмена Лежит Уравнение Переноса...

В основе приближенных расчетов процессов теплообмена лежит уравнение переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку при условии постоянных и изменяющихся вдоль поверхности теплообмена температур теплоносителей.

Теплопередача при постоянных температурах теплоносителей. Рассмотрим перенос теплоты при установившемся процессе через многослойную плоскую стенку (рис. 15). Передача тепла в этом случае состоит из трех стадий: теплоотдача в объеме одного теплоносителя от ядра потока к стенке, перенос тепла через многослойную стенку (например, металлическая стенка реактора и накипь на ней) путем теплопроводности, теплоотдача в объеме другого теплоносителя от стенки в ядро потока. Полагаем, что t1 > t2 (t1 и t2 – температуры горячего и холодного теплоносителя, соответственно), l = const.

Рис. 15. Схема к выводу уравнения теплопередачи через плоскую стенку при постоянных температурах теплоносителей

Количество теплоты, передаваемое за время t от горячего теплоносителя стенке: Q=a1Ft×(t1-tст.1)(5.11)

Это же количество теплоты пройдет через многослойную стенку в результате теплопроводности:

и (5.12)

 

Количество теплоты, отдаваемое стенкой холодному (менее нагретому) теплоносителю, определяется по формуле:

Q=a2Ft×(tст.2-t2) (5.13)

Перепишем приведенные выше уравнения для расчета количество переносимого тела через многослойную стенку от одного теплоносителя к другому следующим образом:

(5.14)

Левая часть каждого из этих уравнений выражает термическое сопротивление соответствующей стадии переноса тепла. Сложив соответственно левые и правые части каждого уравнения, найдем общее термическое сопротивление процессу теплопередачи:

(5.15)

Переписав последнее уравнение относительно теплового потока Q, получим: (5.16)

Обозначим: (5.17)

Окончательно получим уравнение теплопередачи, описывающее процесс переноса тепла между теплоносителями через разделяющую стенку при постоянных температурах теплоносителей:Q=K×F×t×(t1-t2),

Выражение (5.17) называют уравнением аддитивности термических сопротивлений (термическое сопротивление теплоносителей (1/a1и1/a) и термическое сопротивление многослойной стенки - ). В этом уравнении знаменатель представляет собой суммарное термическое сопротивление, причем частные сопротивления могут сильно различаться. Поэтому при расчете процесса теплопередачи следует проводить сопоставление частных термических сопротивлений, входящих в уравнение (5.17), и наметить возможные пути снижения термического сопротивления лимитирующей стадии процесса. Для иллюстрации путей интенсификации переноса тепла за счет снижения термических сопротивлений и увеличения коэффициента теплопередачи рассмотрим практические примеры:

1) Металлическая стенка без загрязнений. При высоком значении коэффициента теплопроводности металлической стеки l ее термическое сопротивление (d/l) значительно меньше термических сопротивлений теплоносителей (1/a1и1/a2). Как следствие, эффективность теплообмена определяется только коэффициентами теплоотдачи, т.е. выражение для расчета коэффициента теплопередачи принимает вид:

(5.18)

Теплоносители, участвующие в теплопереносе, как правило, значительно отличаются коэффициентами теплоотдачи. В этом случае можно достаточно достоверно выбрать эффективные пути интенсификации теплопередачи. Допустим, что a1>>a2, как следствие, термическое сопротивление второго теплоносителя будет лимитировать весь процесс теплопередачи при 1/a1<<1/a2 и К » a2.Таким образом, в случае металлической стенки без загрязнений эффективность теплопередачи определяется меньшим из коэффициентов теплоотдачи. Для интенсификации переноса тепла необходимо разрабатывать способы увеличения только этого коэффициента теплоотдачи, например, за счет роста скорости движения теплоносителя.

2) Металлическая стенка с загрязнением. Коэффициент теплопроводности отложений на поверхности технологического оборудования (lотл) значительно меньше теплопроводности металлической стенки (lст): lотл << lст. Как следствие, термическое сопротивление отложений превышает термическое сопротивление металлической стенки и теплоносителей: dотл/lотл >> dст/lст(1/a1 и1/a2), а коэффициент теплопередачи принимает значение:

(5.19)

Видно, что эффективность теплообмена полностью определяется термическим сопротивлением загрязненного слоя на поверхности технологического оборудования. Единственным способом увеличения коэффициента теплопередачи является уменьшение толщины отложений.

Теплопередача при переменных температурах теплоносителей. Часто процессы теплообмена протекают при изменении температуры теплоносителей либо по поверхности теплообмена, либо по поверхности и во времени одновременно. В первом случае процесс является стационарным, во втором - нестационарным. При этом большое влияние на процесс теплообмена оказывает относительное движение теплоносителей. Различают следующие схемы относительного движения теплоносителей: 1) прямоток, при котором теплоносители движутся в одном и том же направлении (рис. 16,а); 2) противоток, при котором теплоносители движутся в противоположных направлениях (рис. 16,б); 3) перекрестный ток, при котором теплоносители перемещаются по отношению друг к другу во взаимно перпендикулярном направлении (рис. 16,в); 4) смешанный ток (рис. 16,г), при котором один теплоноситель движется в одном направлении, а другой - попеременно как прямотоком, так и противотоком.

Во всех случаях движения теплоносителей температура более нагретой жидкости, отдающей тепло, уменьшается от начального значения t до конечного t, а температура менее нагретой жидкости, воспринимающей тепло, увеличивается от t до t в конце процесса. Вследствие этого разность температур также будет изменяться от начального ее значения Dtн до конечного Dtк.

Рис. 16. Схемы относительного движения теплоносителей в теплообменниках.

Уравнение теплопередачи при прямотоке. Если за время t по обеим сторонам стенки протекают в одном и том же направлении с одной стороны более нагретая, а с другой – менее нагретая жидкость, то теплообмен будет происходить только через стенку. Температура обеих жидкостей будет изменяться по мере протекания их вдоль поверхности нагрева вследствие теплообмена, но для каждой отдельной точки стенки температура должна быть установившейся. Схема изменения температуры теплоносителей при прямотоке изображена на рис. 17.

Рис. 17. Изменение температуры при параллельном токе теплоносителей.

Уравнение теплопередачи при переменных температурах для установившегося процесса теплопереноса в случае параллельного тока теплоносителей имеет вид:

(5.20).

Если температура теплоносителей вдоль поверхности нагрева изменяется незначительно и отношение Dtн/Dtк < 2, то среднюю разность температур Dtср с достаточной точностью можно определить как среднеарифметическую Dtср=0,5(Dtн + Dtк).

Уравнение теплопередачи при движении жидкостей противотоком. Схема изменения температуры теплоносителей при их движении противотоком вдоль разделяющей поверхности теплообмена приведена на рис. 18.

Уравнение теплопередачи при переменных температурах для установившегося процесса теплопереноса в случае движения теплоносителей противотоком имеет вид:

, (5.21)

где Dtб – большая разность температур на конце теплообменника; Dtм – меньшая разность температур на конце теплообменника.

Рис. 18. Изменение температуры при противотоке.

Тема 6: Аппаратура для теплообмена.

Цель:Познакомитьс применяемой в промышленности аппаратурой для теплообмена, научить проводить подбор нагревающих и охлаждающих агентов, основываясь на знании их областей применения, преимуществ и недостатков.

– Конец работы –

Эта тема принадлежит разделу:

Химическая технология

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ... ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теплопередача

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткие сведения по истории развития химической технологии
История химической технологии неотделима от истории химической промышленности. Возникновение в Европе мануфактур и промыслов по получению основных химических продуктов следует отнести к 15 веку, ко

Гидростатика. Понятие давления
Гидростатика изучает жидкости в абсолютном и относительном покое. Кардинальная проблема этого раздела, лежащая в основе ряда конкретных задач – определение давления в произвольной точке техн

Дифференциальные уравнения равновесия Эйлера
На жидкость, находящуюся в покое, действуют сила тяжести и сила гидростатического давления. Соотношение между силами, действующими на жидкость, которая находится в состоянии покоя, определяющее усл

Основное уравнение гидростатики
Для получения закона распределения давления во всём объёме покоящейся жидкости необходимо эту систему уравнений проинтегрировать. После интегрирования уравнений (2.1) и (2.2) выясняется, что значен

Гидростатические машины
Рис. 3. Гидравлический пресс. 1- малый поршень; 2 –

Приборы для измерения давления
В технике для измерения давления применяют манометры, вакуумметры, пьезометры. Простейшим прибором является пьезометр – открытая, обычно стеклянная трубка (рисунок 4а). Чтобы избежать влияни

Основные характеристики движения жидкости
Рассмотрим движение жидкости по трубе постоянного сечения. Количество жидкости, протекающее через всё поперечное сечение трубопровода или аппарата в единицу времени, называется

Дифференциальные уравнения движения Эйлера
Выведем дифференциальные уравнения движения Эйлера для установившегося во времени потока идеальной жидкости, Движение жидкости является установившимся или стационарным, если скорость части

Уравнение Бернулли для идеальных жидкостей
Для вывода уравнения Бернулли необходимо преобразовать и проинтегрировать дифференциальные уравнения движения Эйлера, чтобы перейти от элементарного объёма ко всему объёму жидкости. Сначала раздели

Уравнение Бернулли для реальных жидкостей
При движении реальной жидкости её гидродинамический напор Н (или сумма потенциальной и кинетической энергии потока) не остаётся постоянным, так как частицы жидкости встречают сопротивление,

Дифференциальное уравнение неразрывности потока
Рассмотрим жидкость, текущую без пустот и разрывов и при отсутствии источников массы. Выделим в объёме жидкости элементарный параллепипед объёмом dV = dxdydz, рёбра которого ориентированы па

Режимы движения жидкости
Рядом исследователей (Хеганом в 1869 г., Менделеевым в 1880 г., Рейнольдсом в 1883 г.) было замечено, что существует два принципиально разных режима движения жидкости. Наиболее полно этот вопрос бы

С помощью гидродинамических трубок
Для определения расхода необходимо измерить динамический напор, а затем рассчитать значение скорости. Непосредственное определение динамического напора осуществляют при помощи гидродинамических тру

С переменным перепадом давления
  Принцип действия приборов с переменным перепадом давления основан на том, что на пути движения жидкости или газа ставят преграду с отверстием.

Определение расхода газа или жидкости приборами с постоянным перепадом
Действие этих приборов основано на уравновешивании силы тяжести поплавка силой, развиваемой давлением восходящего потока жидкости или газа. При этом удельный вес поплавка должен быть больше удельно

Скорость осаждения. Закон Стокса
Рассмотрим осаждение твёрдой шарообразной частицы в неподвижной среде под действием силы тяжести G: G = mg. Если отсутствует сопротивление среды, то скорость осаждения частицы w

Центрифугирование
Проводя процесс разделения гетерогенных систем под действием центробежных сил, можно существенно интенсифицировать его по сравнению с отстаиванием благодаря увеличению движущей силы. Для с

Фильтрация
- это процесс разделения суспензий, пылей или туманов путём пропускания их через пористую перегородку (фильтр), способную задерживать взвешенные в дисперсионной среде частицы. В качестве материала

Псевдоожижение
Псевдоожижение – процесс приведения твёрдого зернистого материала в состояние, при котором его свойства приближаются к свойствам жидкости. Псевдоожиженные системы способны прин

Основы теплопередачи
Большинство процессов химической технологии протекает в заданном направлении только при определённой температуре, которая достигается путём подвода или отвода тепловой энергии (теплоты). Процессы,

Виды распространения тепла
Перенос теплоты является сложным процессом, поэтому при изучении тепловых процессов его расчленяют на более простые явления. Различают три вида переноса теплоты: теплопроводность, тепловое излучени

Тепловые балансы
Тепловой поток Q обычно определяют из теплового баланса. При этом в общем случае (без учёта потери теплоты в окружающую среду) Q = Q1 = Q2, или Q = G

Основное уравнение теплопередачи
Для расчёта теплообменных аппаратов широко используют кинетическое уравнение, которое выражает связь между тепловым потоком Q и поверхностью F теплопередачи, называемое основным ур

Различные способы переноса тепла
Теплопроводность. Величину теплового потока Q, возникающего в теле вследствие теплопроводности при некоторой разности температур в отдельных точках, определяют

Подвод тепла. Нагревающие агенты
Нагревание является одним из наиболее распространенных процес­сов химической технологии. Нагревание необходимо для ускорения мно­гих химических реакций, а также для выпаривания, перегонки, сушки и

Виды массообменных процессов
Наибольшее распространение получили следующие процессы: Абсорбция– избирательное поглощение газов или паров из газовых или паровых смесей жидкими поглотителями (абсорб

Способы выражения составов фаз
При изучении массообменных процессов приходится иметь дело со смесью различных компонентов, находящихся в жидкой или паровой фазе. Свойства такой смеси зависит от её состава, т.е. относительного со

Правило фаз Гиббса
При взаимодействии фаз системы происходит обмен веществом и энергией; такой массо- и теплообмен идет через поверхность раздела фаз, стремясь достигнуть состояния равновесия, при котором скорость пе

Фазовое равновесие, линия равновесия
Рассмотрим процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой. Обозначим: Фх – жидка

Материальный баланс. Рабочая линия
Рабочие концентрации распре­деляемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений. Зависимость между рабочими концентрациями распределяемого в

И направление переноса вещества из фазы в фазу
В общем случае: движущей силой массообменных процессов является отклонение данной системы от состояния равновесия. Со стороны газовой фазы: движущей силой процесса является разность между

Фазовые диаграммы
Если система состоит из двух компонентов (К=2) и между ними не происходит химического взаимодействия, то при наличии жидкой и паровой фаз число фаз Ф=2. Согласно правилу фаз, число ст

Разновидности простой перегонки
Обычно процесс простой перегонки проводят периодически, хотя в принципе этот процесс можно организовать и непрерывным. При периодической перегонке жидкость постепенно испаряется, и образую

Общая оценка процессов дистилляции
Чаще дистилляцию применяют в промышленности в тех случаях, когда не требуется высокой чистоты продукта. Высокие концентрации низкокипящего компонента можно получить лишь при большой разнице в темпе

Сущность ректификации
Ректификацией называют процесс переноса компонентов между кипящей жидкой и насыщенной конденсирующейся паровой фазами при противотоке этих фаз. Или другими словами, ректификаци

Аппаратурное оформление процессов ректификации
Ректификация, как и другие процессы массопередачи, протекает на поверхности раздела фаз, поэтому аппараты для ректификации должны обеспечивать развитую поверхность контакта между паровой и жидкой ф

Ректификационные колонны
со ступенчатым контактом фаз - представляют собой колонны, внутри которых на определенном расстоянии друг от друга по высоте колонны размещают горизонтальные перегородки –

Укрепляющей и исчерпывающей частей колонны
Для получения уравнений рабочих линий используем общее для всех массообменных процессов уравнение, выразив применительно к ректификации все входящие в него величины. Уравнение рабочей лини

Минимальное и действительное (рабочее) флегмовое число
При заданном составе дистиллята хр величина отрезка В (см. рис. 45), отсекаемого рабочей линией укрепляющей части колонны на оси ординат, зависит только от флегмового числа

Графический метод определения числа теоретических тарелок
Одной из основных целей расчета колонны является определение числа тарелок, необходимых для разделения данной смеси, состава а на ректификат и остаток заданных качеств (ур

Особенности ректификации многокомпонентных смесей
Для разделения n-компонентной смеси требуется (n — 1) колонн, однако число возможных вариантов технологических схем с расчетом числа продуктов и способов их получения увеличивается эк

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги