рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Подвод тепла. Нагревающие агенты

Подвод тепла. Нагревающие агенты - раздел Философия, Химическая технология Нагревание Является Одним Из Наиболее Распространенных Процес­сов Химической ...

Нагревание является одним из наиболее распространенных процес­сов химической технологии. Нагревание необходимо для ускорения мно­гих химических реакций, а также для выпаривания, перегонки, сушки и других процессов. Тепловая энергия для проведения технологических процессов может быть получена различными способами и от разных источников.

Прямыми источниками тепла являются дымовые газы и электрический ток.

В качестве промежуточных теплоносителей, воспринимающих тепло от указанных источников тепла и передающих его нагреваемому веще­ству, применяют:

1) Водяной пар или горячую воду;

2) Минеральные масла;

3) Специальные теплоносители: перегретую воду, высококипящие жидкости и их пары, расплавленные неорганические соли и их смеси, некоторые углеводороды и металлы (в жидком состоянии).

Кроме того, для нагревания может быть использовано тепло отходя­щих газов и жидкостей, обладающих относительно высокой температурой.

Важнейшими условиями, от которых зависит выбор теплоносителя, являются:

1) Температура нагрева и возможность ее регулирования;

2) Упругость пара и термическая устойчивость теплоносителя;

3) Токсичность и химическая активность теплоносителя;

4) Безопасность нагревания;

5) Стоимость и доступность теплоносителя.

Нагревание насыщенным водяным паром ши­роко применяется в химической технологии. При таком нагревании мож­но точно регулировать температуру нагрева путем изменения давления пара. Вследствие хорошей теплоотдачи от насыщенного пара аппараты могут иметь значительно меньшие поверхности нагрева, чем при нагре­вании, например, дымовыми газами. Паровые нагревательные устрой­ства при использовании тепла конденсата работают при очень высо­ком К.П.Д. Однако, применяя в качестве теплоносителя водяной пар, труд­но получить высокую температуру нагрева, так как для этого требуется резко увеличить давление пара. Так, например, для достижения температуры 3500С необходимо поднять давление пара до 180 атм. Поэтому нагревание водяным паром ведут обычно до температур не более 1800.

Наиболее простым способом передачи тепла является нагревание «острым» паром, который вводят непосредственно в нагреваемую жидкость. Этот пар конденсируется и отдает тепло нагреваемой жидкости, а образующийся конденсат смешивается с жидкостью. Если свойства обогреваемого мате­риала или условия проведения процесса не позволяют вести нагревание «острым» паром, применяют устройства для нагрева через стенки, раз­деляющие пар и нагреваемую жидкость, т. е. ведут нагревание «глухим» паром. Такой нагрев ведется через двойные днища или рубашки, змее­вики, трубчатые и спиральные теплообменники и др.

Нагревание горячей водой применяют значительно реже, чем водяным паром, хотя по своим теплотехническим свойствам вода почти не отличается от пара. Ограниченное использование воды объясняется тем, что для нагрева необходимы пар или дымовые газы, причем горячая вода должна иметь более высокую начальную температуру, чем пар, так как она охлаждается в процессе нагревания, а пар отдает скрытую теплоту конденсации при постоянной температуре. Применяют главным образом отработанную горячую воду или паровой конденсат. Используется для нагрева веществ до 1000.

Нагревание специальными теплоносителя­ми. С развитием химической технологии увеличивается число процессов, проводимых при температурах 500-6000 и более. Для получения темпе­ратур выше 1800 наиболее рационально использовать перегретую воду или пары высококипящих жидкостей, обладающих низкой упругостью, и пары термически стойких жидкостей, отличающихся высокой теплоемкостью. Применяют органические теплоносители - дифенил и дифениловый эфир, эвтектическую смесь дифенила и дифенилового эфира и др., а также ртуть, смеси солей, расплавленные металлы. Эти вещества предварительно нагревают или испаряют при помощи дымовых газов или электрического тока, после чего нагретые вещества (жидкости или пары) отдают тепло нагреваемому материалу через стен­ки аппаратов.

Смесь дифенила и дифенилового эфира в технике имеет название «Даутерм А». Дифенил и дифениловый эфир в определённом соотношении дают эвтектическую смесь с низкой температурой плавления (12,4 0С), поэтому эту смесь можно транспортировать по трубам, не опасаясь кристаллизации. Температура кипения смеси при атмосферном давлении равна 258 0С. Поэтому в жидком виде дифенильная смесь используется для нагрева до температур не более 250 0С.

Примером использования в качестве нагревающих агентов расплавов солей является нитрит-нитратная смесь, содержащая 40% нитрита натрия, 7% нитрата натрия и 53% нитрата калия. Температура плавления смеси 142,3 0С. Эта смесь применяется для нагрева при атмосферном давлении до температур 500 – 540 0С.

Недостатки нитрит-нитратной смеси:

1. При температурах ≥450 0С смесь вызывает коррозию стали.

2. Частный коэффициент теплоотдачи смеси ниже, чем от перегретой воды;

3. Смесь является сильным окислителем, поэтому недопустим её непосредственный контакт с органическими веществами, стружкой и опилками металлов.

Нагревание электрическим током. При помощи электрического тока можно достичь весьма высоких температур нагрева; например, в электропечах для сжигания атмосферного азота температура равна 32000.

Электрические нагревательные устройства работают при более высоком К.П.Д., чем устройства для нагрева другими теплоносителями. При нагревании электрическим током используется до 95% электри­ческой энергии, вводимой в нагревательный аппарат. Однако нагревание электрическим током мало распространено вследствие сравнительно высокой стоимости и дефицитности электроэнергии.

Нагревание дымовыми газами наиболее распростра­нено; при этом можно достигнуть температуры 10000 и выше. Вместе с тем обогрев дымовыми газами имеет и недостатки. Коэффициент полезного действия печей обычно не превы­шает 30%, так как значительная часть тепла уходит в атмосферу с отхо­дящими газами, которые имеют высокую температуру (вследствие того, что поверхности теплообмена обогреваемых аппаратов обычно невелики). При обогреве дымовыми газами нельзя быстро регулировать тем­пературу нагрева, а коэффициенты теплоотдачи очень низки. Но так как газы имеют высокую температуру, удается достичь значительных раз­ностей температур теплоносителя и нагреваемого продукта, что отчасти компенсирует малую величину коэффициентов теплоотдачи. Нагревание дымовыми газами легколетучих и легко воспламеняющихся материалов опасно. Следует указать также на значительный объемный расход дымовых газов (из-за низкой теплоемкости) и сложность их транспортиро­вания (из-за больших объемов и высокой температуры).

– Конец работы –

Эта тема принадлежит разделу:

Химическая технология

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ... ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Подвод тепла. Нагревающие агенты

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткие сведения по истории развития химической технологии
История химической технологии неотделима от истории химической промышленности. Возникновение в Европе мануфактур и промыслов по получению основных химических продуктов следует отнести к 15 веку, ко

Гидростатика. Понятие давления
Гидростатика изучает жидкости в абсолютном и относительном покое. Кардинальная проблема этого раздела, лежащая в основе ряда конкретных задач – определение давления в произвольной точке техн

Дифференциальные уравнения равновесия Эйлера
На жидкость, находящуюся в покое, действуют сила тяжести и сила гидростатического давления. Соотношение между силами, действующими на жидкость, которая находится в состоянии покоя, определяющее усл

Основное уравнение гидростатики
Для получения закона распределения давления во всём объёме покоящейся жидкости необходимо эту систему уравнений проинтегрировать. После интегрирования уравнений (2.1) и (2.2) выясняется, что значен

Гидростатические машины
Рис. 3. Гидравлический пресс. 1- малый поршень; 2 –

Приборы для измерения давления
В технике для измерения давления применяют манометры, вакуумметры, пьезометры. Простейшим прибором является пьезометр – открытая, обычно стеклянная трубка (рисунок 4а). Чтобы избежать влияни

Основные характеристики движения жидкости
Рассмотрим движение жидкости по трубе постоянного сечения. Количество жидкости, протекающее через всё поперечное сечение трубопровода или аппарата в единицу времени, называется

Дифференциальные уравнения движения Эйлера
Выведем дифференциальные уравнения движения Эйлера для установившегося во времени потока идеальной жидкости, Движение жидкости является установившимся или стационарным, если скорость части

Уравнение Бернулли для идеальных жидкостей
Для вывода уравнения Бернулли необходимо преобразовать и проинтегрировать дифференциальные уравнения движения Эйлера, чтобы перейти от элементарного объёма ко всему объёму жидкости. Сначала раздели

Уравнение Бернулли для реальных жидкостей
При движении реальной жидкости её гидродинамический напор Н (или сумма потенциальной и кинетической энергии потока) не остаётся постоянным, так как частицы жидкости встречают сопротивление,

Дифференциальное уравнение неразрывности потока
Рассмотрим жидкость, текущую без пустот и разрывов и при отсутствии источников массы. Выделим в объёме жидкости элементарный параллепипед объёмом dV = dxdydz, рёбра которого ориентированы па

Режимы движения жидкости
Рядом исследователей (Хеганом в 1869 г., Менделеевым в 1880 г., Рейнольдсом в 1883 г.) было замечено, что существует два принципиально разных режима движения жидкости. Наиболее полно этот вопрос бы

С помощью гидродинамических трубок
Для определения расхода необходимо измерить динамический напор, а затем рассчитать значение скорости. Непосредственное определение динамического напора осуществляют при помощи гидродинамических тру

С переменным перепадом давления
  Принцип действия приборов с переменным перепадом давления основан на том, что на пути движения жидкости или газа ставят преграду с отверстием.

Определение расхода газа или жидкости приборами с постоянным перепадом
Действие этих приборов основано на уравновешивании силы тяжести поплавка силой, развиваемой давлением восходящего потока жидкости или газа. При этом удельный вес поплавка должен быть больше удельно

Скорость осаждения. Закон Стокса
Рассмотрим осаждение твёрдой шарообразной частицы в неподвижной среде под действием силы тяжести G: G = mg. Если отсутствует сопротивление среды, то скорость осаждения частицы w

Центрифугирование
Проводя процесс разделения гетерогенных систем под действием центробежных сил, можно существенно интенсифицировать его по сравнению с отстаиванием благодаря увеличению движущей силы. Для с

Фильтрация
- это процесс разделения суспензий, пылей или туманов путём пропускания их через пористую перегородку (фильтр), способную задерживать взвешенные в дисперсионной среде частицы. В качестве материала

Псевдоожижение
Псевдоожижение – процесс приведения твёрдого зернистого материала в состояние, при котором его свойства приближаются к свойствам жидкости. Псевдоожиженные системы способны прин

Основы теплопередачи
Большинство процессов химической технологии протекает в заданном направлении только при определённой температуре, которая достигается путём подвода или отвода тепловой энергии (теплоты). Процессы,

Виды распространения тепла
Перенос теплоты является сложным процессом, поэтому при изучении тепловых процессов его расчленяют на более простые явления. Различают три вида переноса теплоты: теплопроводность, тепловое излучени

Тепловые балансы
Тепловой поток Q обычно определяют из теплового баланса. При этом в общем случае (без учёта потери теплоты в окружающую среду) Q = Q1 = Q2, или Q = G

Основное уравнение теплопередачи
Для расчёта теплообменных аппаратов широко используют кинетическое уравнение, которое выражает связь между тепловым потоком Q и поверхностью F теплопередачи, называемое основным ур

Различные способы переноса тепла
Теплопроводность. Величину теплового потока Q, возникающего в теле вследствие теплопроводности при некоторой разности температур в отдельных точках, определяют

Теплопередача
В основе приближенных расчетов процессов теплообмена лежит уравнение переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку при условии постоянных и изменяющихся вдоль п

Виды массообменных процессов
Наибольшее распространение получили следующие процессы: Абсорбция– избирательное поглощение газов или паров из газовых или паровых смесей жидкими поглотителями (абсорб

Способы выражения составов фаз
При изучении массообменных процессов приходится иметь дело со смесью различных компонентов, находящихся в жидкой или паровой фазе. Свойства такой смеси зависит от её состава, т.е. относительного со

Правило фаз Гиббса
При взаимодействии фаз системы происходит обмен веществом и энергией; такой массо- и теплообмен идет через поверхность раздела фаз, стремясь достигнуть состояния равновесия, при котором скорость пе

Фазовое равновесие, линия равновесия
Рассмотрим процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой. Обозначим: Фх – жидка

Материальный баланс. Рабочая линия
Рабочие концентрации распре­деляемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений. Зависимость между рабочими концентрациями распределяемого в

И направление переноса вещества из фазы в фазу
В общем случае: движущей силой массообменных процессов является отклонение данной системы от состояния равновесия. Со стороны газовой фазы: движущей силой процесса является разность между

Фазовые диаграммы
Если система состоит из двух компонентов (К=2) и между ними не происходит химического взаимодействия, то при наличии жидкой и паровой фаз число фаз Ф=2. Согласно правилу фаз, число ст

Разновидности простой перегонки
Обычно процесс простой перегонки проводят периодически, хотя в принципе этот процесс можно организовать и непрерывным. При периодической перегонке жидкость постепенно испаряется, и образую

Общая оценка процессов дистилляции
Чаще дистилляцию применяют в промышленности в тех случаях, когда не требуется высокой чистоты продукта. Высокие концентрации низкокипящего компонента можно получить лишь при большой разнице в темпе

Сущность ректификации
Ректификацией называют процесс переноса компонентов между кипящей жидкой и насыщенной конденсирующейся паровой фазами при противотоке этих фаз. Или другими словами, ректификаци

Аппаратурное оформление процессов ректификации
Ректификация, как и другие процессы массопередачи, протекает на поверхности раздела фаз, поэтому аппараты для ректификации должны обеспечивать развитую поверхность контакта между паровой и жидкой ф

Ректификационные колонны
со ступенчатым контактом фаз - представляют собой колонны, внутри которых на определенном расстоянии друг от друга по высоте колонны размещают горизонтальные перегородки –

Укрепляющей и исчерпывающей частей колонны
Для получения уравнений рабочих линий используем общее для всех массообменных процессов уравнение, выразив применительно к ректификации все входящие в него величины. Уравнение рабочей лини

Минимальное и действительное (рабочее) флегмовое число
При заданном составе дистиллята хр величина отрезка В (см. рис. 45), отсекаемого рабочей линией укрепляющей части колонны на оси ординат, зависит только от флегмового числа

Графический метод определения числа теоретических тарелок
Одной из основных целей расчета колонны является определение числа тарелок, необходимых для разделения данной смеси, состава а на ректификат и остаток заданных качеств (ур

Особенности ректификации многокомпонентных смесей
Для разделения n-компонентной смеси требуется (n — 1) колонн, однако число возможных вариантов технологических схем с расчетом числа продуктов и способов их получения увеличивается эк

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги