рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Ректификационные колонны

Ректификационные колонны - раздел Философия, Химическая технология Со Ступенчатым Контактом Фаз - Представляют Собой К...

со ступенчатым контактом фаз -

представляют собой колонны, внутри которых на определенном расстоянии друг от друга по высоте колонны размещают горизонтальные перегородки – тарелки. Тарелки служат для развития поверхности контакта фаз при направленном движении этих фаз (жидкость течет сверху вниз, а пар проходит в виде пузырьков или струек снизу вверх) и многократном взаимодействии жидкости и пара.

Гидродинамические режимы работы тарелок:

1) Пузырьковый (барботажный) режим возникает при небольших скоростях пара, когда в виде отдельных пузырьков пар движется через слой жидкости на тарелке. Поверхность контакта фаз в этом режиме невелика.

2) Пенный режим возникает при увеличении скорости пара, когда его пузырьки, выходящие из прорезей и отверстий, сливаются в струи, которые вследствие сопротивления барботажного слоя разрушаются с образованием ещё большего числа мелких пузырьков. При этом на тарелке образуется газожидкостная система – пена. Основной поверхностью контакта фаз в такой системе является поверхность пузырьков, а также струй пара и капель жидкости над парожидкостной системой, которые образуются при разрушении пузырьков пара в момент их выхода из барботажного слоя. Поверхность контакта фаз при пенном режиме наибольшая, поэтому пенный режим обычно является наиболее рациональным режимом работы тарельчатых колонн.

3) Струйный (инжекционный) режим возникает при дальнейшем увеличении скорости пара, когда увеличивается длина паровых струй и наступает такой режим, при котором они выходят из газожидкостного слоя не разрушаясь, но образуя большое количество брызг. В этом режиме поверхность контакта фаз существенно меньше, чем в пенном.

По способу слива жидкости с тарелки на тарелку тарельчатые колонны подразделяются на колонны с тарелками со сливными устройствами и с тарелками без сливных устройств.

Тарельчатые колонны со сливными устройствами.К аппаратам этого типа относятся колонны с колпачковыми, ситчатыми, клапанными и другими тарелками. Эти тарелки имеют специальные устройства для перетока жидкости с одной тарелки на другую – сливные трубки, карманы и т.д. Нижние концы сливных устройств погружены в жидкость на нижерасположенных тарелках для создания гидрозатвора, предотвращающего прохождение газа через сливное устройство.

Принцип работы колонн такого типа показан на рис. 41 на примере колонны с колпачковыми тарелками.

 

 

Жидкость подается на верхнюю тарелку, движется вдоль тарелки от одного сливного устройства к другому, перетекает с тарелки на тарелку и удаляется из нижней части абсорбера. Пар поступает в нижнюю часть абсорбера, проходит через прорези колпачков (в других абсорберах – через щели и т.д.) и затем попадает в слой жидкости на тарелке. При этом пар в жидкости распределяется в виде пузырьков и струй, образуя в ней слой пены, в которой происходят основные процессы массо- и теплопереноса. Пройдя через все тарелки, пар уходит из верхней части аппарата.

Колпачковые тарелки устойчиво работают при значительных изменениях нагрузок по пару и жидкости и они мало чувствительны к загрязнениям и осадкам. Но недостатки колпачковых тарелок довольно существенны – они сложны в устройстве, для их изготовления требуются большие затраты металла, они отличаются большим гидравлическим сопротивлением и малой предельно допустимой скоростью пара.

Ситчатые тарелки.Эти тарелки (рис. 42) имеют большое число отверстий диаметром 2-8 мм, через которые проходит пар в слой жидкости на тарелке. К достоинствам ситчатых тарелок относятся простота их устройства, легкость монтажа и ремонта, низкое гидравлическое сопротивление, достаточно высокая эффективность. Недостатки: во-первых, при слишком малой скорости пара жидкость может просачиваться через отверстия тарелки на нижерасположенную тарелку, что приводит к существенному снижению движущей силы процесса ректификации. Во-вторых, эти тарелки чувствительны к загрязнениям и осадкам, которые забивают их отверстия.

Рис. 42. Тарельчатая колонна с ситчатыми тарелками

 

Клапанные тарелки. Принцип действия этих тарелок (рис.43) состоит в том, что клапан 2, свободно лежащий над отверстием в тарелке 1, с изменением расхода пара увеличивает подъём и, соответственно, площадь зазора между клапаном и плоскостью тарелки для прохода пара. Поэтому скорость пара в этом зазоре, а значит и во входе в слой жидкости на тарелке, остаётся постоянной, что обеспечивает неизменно эффективную работу тарелки. Гидравлическое сопротивление тарелки при этом увеличивается незначительно. Высота подъёма клапана определяется высотой ограничителя 7.

  Рис. 43. Клапанные тарелки.

 

К достоинствам клапанных тарелок следует отнести их гидродинамическую устойчивость и высокую эффективность в широком интервале изменения нагрузок по пару. К недостаткам этих тарелок относятся их повышенное гидравлическое сопротивление и усложнённая конструкция тарелки.

Колонны с тарелками без сливных устройств. В тарелке без сливных устройств (рис. 44) пар и жидкость проходят через одни и те же отверстия или щели. При этом одновременно с взаимодействием фаз на тарелке происходит сток жидкости на нижерасположенную тарелку – «проваливание» жидкости.

 

Тема 10: Анализ работы ректификационных колонн и их расчёт

Цель: Представить вывод материального баланса, уравнений рабочих линий колонны ректификации, объяснить выбор флегмового числа. Привести графический способ определения числа теоретических ступеней колонны.

Известно 2 основных метода анализа работы и расчёта ректификационных колонн: графоаналитический (графический) и аналитический. Графический метод проще и нагляднее, поэтому проведём анализ с его помощью.

Допущения, принятые при расчёте ректификационных колонн

1. Молярные теплоты испарения компонентов при одной и той же температуре приблизительно одинаковы (правило Трутона), поэтому каждый киломоль пара при конденсации испаряет один киломоль жидкости. Следовательно, количество поднимающихся паров (в киломолях) в любом сечении колонны одинаково.

2. В дефлегматоре не происходит изменение состава пара. Следовательно, состав пара, уходящего из колонны, равен составу дистиллята, т.е. ур = хр.

3. При испарении жидкости в кипятильнике не происходит изменение её состава. Следовательно, состав пара, образующегося в кипятильнике соответствует составу кубового остатка, т.е. уw = xw.

4. Теплоты смешения компонентов разделяемой смеси равны 0.

– Конец работы –

Эта тема принадлежит разделу:

Химическая технология

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ... ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ... ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Ректификационные колонны

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Краткие сведения по истории развития химической технологии
История химической технологии неотделима от истории химической промышленности. Возникновение в Европе мануфактур и промыслов по получению основных химических продуктов следует отнести к 15 веку, ко

Гидростатика. Понятие давления
Гидростатика изучает жидкости в абсолютном и относительном покое. Кардинальная проблема этого раздела, лежащая в основе ряда конкретных задач – определение давления в произвольной точке техн

Дифференциальные уравнения равновесия Эйлера
На жидкость, находящуюся в покое, действуют сила тяжести и сила гидростатического давления. Соотношение между силами, действующими на жидкость, которая находится в состоянии покоя, определяющее усл

Основное уравнение гидростатики
Для получения закона распределения давления во всём объёме покоящейся жидкости необходимо эту систему уравнений проинтегрировать. После интегрирования уравнений (2.1) и (2.2) выясняется, что значен

Гидростатические машины
Рис. 3. Гидравлический пресс. 1- малый поршень; 2 –

Приборы для измерения давления
В технике для измерения давления применяют манометры, вакуумметры, пьезометры. Простейшим прибором является пьезометр – открытая, обычно стеклянная трубка (рисунок 4а). Чтобы избежать влияни

Основные характеристики движения жидкости
Рассмотрим движение жидкости по трубе постоянного сечения. Количество жидкости, протекающее через всё поперечное сечение трубопровода или аппарата в единицу времени, называется

Дифференциальные уравнения движения Эйлера
Выведем дифференциальные уравнения движения Эйлера для установившегося во времени потока идеальной жидкости, Движение жидкости является установившимся или стационарным, если скорость части

Уравнение Бернулли для идеальных жидкостей
Для вывода уравнения Бернулли необходимо преобразовать и проинтегрировать дифференциальные уравнения движения Эйлера, чтобы перейти от элементарного объёма ко всему объёму жидкости. Сначала раздели

Уравнение Бернулли для реальных жидкостей
При движении реальной жидкости её гидродинамический напор Н (или сумма потенциальной и кинетической энергии потока) не остаётся постоянным, так как частицы жидкости встречают сопротивление,

Дифференциальное уравнение неразрывности потока
Рассмотрим жидкость, текущую без пустот и разрывов и при отсутствии источников массы. Выделим в объёме жидкости элементарный параллепипед объёмом dV = dxdydz, рёбра которого ориентированы па

Режимы движения жидкости
Рядом исследователей (Хеганом в 1869 г., Менделеевым в 1880 г., Рейнольдсом в 1883 г.) было замечено, что существует два принципиально разных режима движения жидкости. Наиболее полно этот вопрос бы

С помощью гидродинамических трубок
Для определения расхода необходимо измерить динамический напор, а затем рассчитать значение скорости. Непосредственное определение динамического напора осуществляют при помощи гидродинамических тру

С переменным перепадом давления
  Принцип действия приборов с переменным перепадом давления основан на том, что на пути движения жидкости или газа ставят преграду с отверстием.

Определение расхода газа или жидкости приборами с постоянным перепадом
Действие этих приборов основано на уравновешивании силы тяжести поплавка силой, развиваемой давлением восходящего потока жидкости или газа. При этом удельный вес поплавка должен быть больше удельно

Скорость осаждения. Закон Стокса
Рассмотрим осаждение твёрдой шарообразной частицы в неподвижной среде под действием силы тяжести G: G = mg. Если отсутствует сопротивление среды, то скорость осаждения частицы w

Центрифугирование
Проводя процесс разделения гетерогенных систем под действием центробежных сил, можно существенно интенсифицировать его по сравнению с отстаиванием благодаря увеличению движущей силы. Для с

Фильтрация
- это процесс разделения суспензий, пылей или туманов путём пропускания их через пористую перегородку (фильтр), способную задерживать взвешенные в дисперсионной среде частицы. В качестве материала

Псевдоожижение
Псевдоожижение – процесс приведения твёрдого зернистого материала в состояние, при котором его свойства приближаются к свойствам жидкости. Псевдоожиженные системы способны прин

Основы теплопередачи
Большинство процессов химической технологии протекает в заданном направлении только при определённой температуре, которая достигается путём подвода или отвода тепловой энергии (теплоты). Процессы,

Виды распространения тепла
Перенос теплоты является сложным процессом, поэтому при изучении тепловых процессов его расчленяют на более простые явления. Различают три вида переноса теплоты: теплопроводность, тепловое излучени

Тепловые балансы
Тепловой поток Q обычно определяют из теплового баланса. При этом в общем случае (без учёта потери теплоты в окружающую среду) Q = Q1 = Q2, или Q = G

Основное уравнение теплопередачи
Для расчёта теплообменных аппаратов широко используют кинетическое уравнение, которое выражает связь между тепловым потоком Q и поверхностью F теплопередачи, называемое основным ур

Различные способы переноса тепла
Теплопроводность. Величину теплового потока Q, возникающего в теле вследствие теплопроводности при некоторой разности температур в отдельных точках, определяют

Теплопередача
В основе приближенных расчетов процессов теплообмена лежит уравнение переноса теплоты от горячего теплоносителя к холодному через разделяющую их стенку при условии постоянных и изменяющихся вдоль п

Подвод тепла. Нагревающие агенты
Нагревание является одним из наиболее распространенных процес­сов химической технологии. Нагревание необходимо для ускорения мно­гих химических реакций, а также для выпаривания, перегонки, сушки и

Виды массообменных процессов
Наибольшее распространение получили следующие процессы: Абсорбция– избирательное поглощение газов или паров из газовых или паровых смесей жидкими поглотителями (абсорб

Способы выражения составов фаз
При изучении массообменных процессов приходится иметь дело со смесью различных компонентов, находящихся в жидкой или паровой фазе. Свойства такой смеси зависит от её состава, т.е. относительного со

Правило фаз Гиббса
При взаимодействии фаз системы происходит обмен веществом и энергией; такой массо- и теплообмен идет через поверхность раздела фаз, стремясь достигнуть состояния равновесия, при котором скорость пе

Фазовое равновесие, линия равновесия
Рассмотрим процесс массопередачи, в котором аммиак, представляющий собой распределяемый компонент, поглощается из его смеси с воздухом чистой водой. Обозначим: Фх – жидка

Материальный баланс. Рабочая линия
Рабочие концентрации распре­деляемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений. Зависимость между рабочими концентрациями распределяемого в

И направление переноса вещества из фазы в фазу
В общем случае: движущей силой массообменных процессов является отклонение данной системы от состояния равновесия. Со стороны газовой фазы: движущей силой процесса является разность между

Фазовые диаграммы
Если система состоит из двух компонентов (К=2) и между ними не происходит химического взаимодействия, то при наличии жидкой и паровой фаз число фаз Ф=2. Согласно правилу фаз, число ст

Разновидности простой перегонки
Обычно процесс простой перегонки проводят периодически, хотя в принципе этот процесс можно организовать и непрерывным. При периодической перегонке жидкость постепенно испаряется, и образую

Общая оценка процессов дистилляции
Чаще дистилляцию применяют в промышленности в тех случаях, когда не требуется высокой чистоты продукта. Высокие концентрации низкокипящего компонента можно получить лишь при большой разнице в темпе

Сущность ректификации
Ректификацией называют процесс переноса компонентов между кипящей жидкой и насыщенной конденсирующейся паровой фазами при противотоке этих фаз. Или другими словами, ректификаци

Аппаратурное оформление процессов ректификации
Ректификация, как и другие процессы массопередачи, протекает на поверхности раздела фаз, поэтому аппараты для ректификации должны обеспечивать развитую поверхность контакта между паровой и жидкой ф

Укрепляющей и исчерпывающей частей колонны
Для получения уравнений рабочих линий используем общее для всех массообменных процессов уравнение, выразив применительно к ректификации все входящие в него величины. Уравнение рабочей лини

Минимальное и действительное (рабочее) флегмовое число
При заданном составе дистиллята хр величина отрезка В (см. рис. 45), отсекаемого рабочей линией укрепляющей части колонны на оси ординат, зависит только от флегмового числа

Графический метод определения числа теоретических тарелок
Одной из основных целей расчета колонны является определение числа тарелок, необходимых для разделения данной смеси, состава а на ректификат и остаток заданных качеств (ур

Особенности ректификации многокомпонентных смесей
Для разделения n-компонентной смеси требуется (n — 1) колонн, однако число возможных вариантов технологических схем с расчетом числа продуктов и способов их получения увеличивается эк

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги