рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение иммунологии, основные ее понятия

Определение иммунологии, основные ее понятия - раздел Философия, Введение В Иммунлогию ...

ВВЕДЕНИЕ В ИММУНЛОГИЮ

Определение иммунологии, основные ее понятия

Система органов, тканей и клеток, осуществляющая реагирование против генетически чужеродных субстанций и их элиминацию получила название иммунной… Ø специфический иммунитет,в основе которого лежат строго специфические… · выработке антител (иммуноглобулинов), которые либо непосредственно уничтожают строго определенный антиген, либо…

Краткий исторический очерк развития основных направлений иммунологии

В развитии иммунологии можно выделить две основные вехи: Ø развитие инфекционной иммунологии (начинается с конца 18-го-середины… Ø развитие экспериментальной и теоретической иммунологии (начинается с середины 20-го века и связано с именами…

МОРФО-ФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА ИММУННОЙ СИСТЕМЫ

Общая морфо-функциональная характеристика иммунной системы

Ø концентрирует антиген Ø обеспечивает контакт с антигеном различных видов клеток Ø транспортирует гуморальные вещества и клеточные структуры лимфоидной ткани в необходимые участки организма …

Морфо-функциональная характеристика тимуса

Рис. 8. Тимус (общий вид).  

Неинкапсулированные лимфатические фолликулы в рыхлой волокнистой соединительной ткани

В рыхлой волокнистой соединительной ткани, расположенной под пограничным эпителием (эпителием слизистой полых органов – дыхательной,…    

Лимфатические узлы

Лимфатические узлы являются периферическими органами иммунной системы, в которых осуществляется Ø контакт лимфоцитов с антигенами, сопровождающийся активацией… ü антигензависимую пролиферацию (клонирование) определенных лимфоцитов, детерминированных на данный антиген,

Морфо-функциональная характеристика селезенки

Селезенка (splen, lien) представляет собой неполый орган иммунной системы, находящийся на пути крови из магистрального сосуда большого круга… Ø диафрагмальную, обращена латерально и вверх (к диафрагме), гладкая и… Ø переднемедиальную (или висцеральную), обращена медиально и вниз (по направлению к органам брюшной полости),…

МЕХАНИЗМЫ НЕСПЕЦИФИЧЕСКОГО ИММУНИТЕТА

 

Понятие о неспецифическом иммунитете

Неспецифический иммунитет – это система предсуществующих защитных факторов организма, присущих данному виду как наследственно обусловленное… Факторы неспецифической защиты в зависимости от механизмов их обуславливающих… Ø физические (анатомические)

Анатомические факторы неспецифического иммунитета

Физические (анатомические) факторы неспецифической иммунной защиты являются первой линией обороны организма от проникновения всего генетически…  

Физиологические механизмы неспецифического иммунитета

Физиологические механизмы неспецифической защиты включают температуру тела, рН и напряженность кислорода в районе колонизации микроорганизмами. Так,…  

Клеточные механизмы неспецифического иммунитета

Клеточные неспецифические механизмы защиты организма от антигенов обеспечиваются способностью некоторых клеток (преимущественно нейтрофилов и… Нейтрофилы представляют собой зернистые лейкоциты (диаметр в периферической… ü специфические (более многочисленные, составляют 80-90% всех гранул, мелкие, их диаметр около 0,2 мкм, более…

Макрофаги тканей представляют собой способные к фагоцитозу клетки, которые являются потомками моноцитов крови. Моноциты – это самые крупные клетки крови (причем их диаметр в крови лишь немногим превосходит таковой других клеток и составляет около 15 мкм, однако в мазке они сильно распластываются по стеклу и достигают 18-20 мкм); на долю моноцитов приходится 2-9% от общего количества лейкоцитов периферической крови. Моноциты образуются в красном костном мозге в течение 2-3 суток, после чего переходят в кровоток. Они представляют собой фактически незрелые клетки, находящиеся на пути из красного костного мозга в ткани. Время пребывания моноцитов в крови варьирует от 36 до 104 часов, после чего они переходят в периферические ткани, где растут (при этом в них увеличивается содержание митохондрий и лизосом) и превращаются в неподвижные клетки – гистиоциты или тканевые макрофаги. Цитоплазма моноцитов слабо базофильна (окрашивается основными красителями в бледно-голубой цвет), по периферии содержит различное количество азурофильных гранул, представляющих собой первичные лизосомы клетки. Ядро моноцитов крупное, эксцентрично расположенное, бледное, имеет выемку, благодаря которой приобретает форму подковы или двудольную. В макрофагах, в отличие от нейтрофилов, содержится большое количество свободных рибосом, хорошо развитый аппарат Гольджи, множество мелких удлиненных митохондрий, что позволяет им существовать в тканях гораздо более длительный промежуток времени (до 100 дней). Активация макрофагов происходит в тканях под действием различных веществ, образующихся в очаге воспаления. В результате активации макрофагов

· увеличивается их размер,

· усиливаются обменные процессы,

· начинается выработка ряда биологически активных веществ, таких как

ü простагландины (в том числе простагландин Е2), которые, с одной стороны, оказывают местное сосудорасширяющее действие в очаге воспаления, а с другой, поступая в общий кровоток, достигают гипоталамуса и активируют метаболические процессы в терморегуляторном центре, что приводит к повышению установочной температуры в гипоталамусе, и как следствие, повышению уровня теплопродукции в организме, сопровождающемуся повышением температуры тела (т.е. к возникновению лихорадки). Простагландины и ряд других веществ, действующих на активность терморегуляторных нейронов гипоталамуса и приводящих к повышению температуры тела, называют эндогенными пирогенами. Вместе с тем некоторые вещества чужеродных микроорганизмов (бактериальные токсины, липополисахариды грамотрицательных бактерий) также могут вызывать развитие лихорадки, в связи с чем их называют экзогенными пирогенами

ü интерфероны (ингибируют репликацию вирусов, подавляют репликацию ДНК в вирусинфицированных клетках организма, тормозят рост опухолей). Интерфероны продуцируется макрофагами и нейтрофилами (интерферон a), фибробластами (интерферон b) и Т-лимфоцитами (интерферон g); стимулятором синтеза интерферонов является двунитчатая вирусная РНК

ü интерлейкин-1 (активирует Т-хелперы, усиливает прохождение эффекторных клеток через эндотелий, обладает пирогенным действием, инициирует продукцию интерлейкина-6),

ü интерлейкин-6 (наряду с макрофагами, продуцируется и фибробластами, это вещество индуцирует дифференцировку Т-киллеров, обладает пирогенным действием)

ü интерлейкин-8 (кроме макрофагов данное вещество синтезируется также эндотелием сосудистых стенок и фибробластами соединительной ткани, оно вызывает хемотаксис и активацию нейтрофилов, усиливает прохождение эффекторных клеток через эндотелий),

ü интерлейкин-12 (усиливает продукцию антител)

ü фактор некроза опухоли a (ФНО-a). Оказывает местное сосудорасширяющее действие, повышает проницаемость сосудистой стенки, что способствует увеличению проникновения в воспаленный очаг Ig G, комплемента и клеток. Кроме того, ФНО-a стимулирует экспрессию в эндотелиальных клетках селектинов Р и Е и адгезивных молекул, фиксирующихся в плазматической мембране этих клеток. Селектины Р и Е, локализованные на поверхности эндотелиальных клеток, распознают углеводные радикалы в гликопротеиновых рецепторах лейкоцитов и в результате связываются с лейкоцитами, замедляя их продвижение по сосуду и способствуя проникновению в окружающую соединительную ткань. Однако взаимодействие гликопротеидных рецепторов фагоцитов с селектинами эндотелиальных клеток происходит с очень низкой аффинностью, вследствие чего прочных комплексов между эндотелием и движущимися по сосуду лейкоцитами не образуется, а происходит лишь замедление движения лейкоцитов. Важную роль в значительном облегчении проникновения лейкоцитов через стенку сосуда играют адгезивные молекулы эндотелия, которые подобно селектинам, проявляют сродство к рецепторам мембраны фагоцитов. Причем это сродство резко возрастает под влиянием интерлейкина-8, прикрепляющегося к мембране фагоцитов и вызывающего определенные пространственные перестройки в рецепторах к адгезивным молекулам, в результате чего фагоциты повышают свой аффинетет по отношению к адгезивным молекулам эндотелия сосудов. Под влиянием адгезивных молекул и интерлейкина-8 происходит остановка движения лейкоцитов по сосуду в очаге воспаления. Наряду со стимуляцией прохождения лейкоцитов через сосудистую стенку ФНО-a усиливает также ток лимфы через лимфатические узлы, обладает пирогенным действием

ü факторы, стимулирующие рост эндотелиальных и гладкомышечных клеток, и ряд других гуморальных факторов.

 

Макрофаги, подобно нейтрофилам, способны к фагоцитозу любых чужеродных субстанций, но при этом проявляют более высокую фагоцитарную активность (могут фагоцитировать в 3-5 раз больше частиц, чем нейтрофилы). Кроме того, нейтрофилы обеспечивают защиту организма в основном от пиогенных (гноеродных) бактерий, тогда как макрофаги способны эффективно бороться с бактериями, вирусами и простейшими, которые могут существовать внутри клеток хозяина.

 

Фагоцитоз нейтрофилами и макрофагами различных антигенных структур складывается из следующих этапов:

· распознавание рецепторными участками плазмолеммы нейтрофилаили макрофага антигенных компонентови связанная с этим процессомадгезия(прикрепление)антигена на поверхности фагоцитирующей клетки. Распознавание и адгезия антигенов на поверхности фагоцитов достигается благодаря простому механизму узнавания, основанному на взаимодействии углеводных остатков плазматической мембраны фагоцита и антигена. Как правило, процесс адгезии фагоцитом чужеродных частичек значительно облегчается при присоединении к антигенам антител (комплексы "антиген-антитело" гораздо легче фиксируются на мембране нейтрофилов за счет наличия рецепторов к Fc-фрагментам антител, в этом проявляется опсонизирующее действие антител), активированных компонентов системы комплемента и некоторых других факторов.

· инвагинация мембраны нейтрофилаили макрофага вокруг чужеродной частицы.Этот процесс возникает по той причине, что прикрепление к мембране фагоцита антигенной частички приводит к активации актин-миозиновой сократительной системы, расположенной поверхностно в цитоплазме клетки (непосредственно под плазмолеммой). Взаимодействие актиновых нитей с миозиновыми в периферической области цитоплазмы фагоцита сопровождается формированием псевдоподий вокруг антигенной структуры. По мере того как близлежащие рецепторы мембраны фагоцита последовательно присоединяются к поверхности антигена, плазматическая мембрана фагоцита надвигается на антигенную частичку, подобно застежке-молнии, до тех пор, пока частичка не будет полностью заключена в мембранную вакуоль (фагосому)

· образование фагосомы

· образование фаголизосомы (в результате слияния фагосомы с гранулами нейтрофила или макрофага), происходит очень быстро (в течение минуты после образования фагосомы)

· уничтожение бактерий и разрушение захваченного материала. Осуществляется в результате двух типов механизмов:

ü кислородзависимых механизмов. Связаны с активацией гексомонофосфатного шунта, в результате которого глюкоза расщепляется до пентозофосфата и происходит восстановление НАДФ+ до НАДФ×Н.

 
 
гесозомонофосфатный шунт

 


Глюкоза + НАДФ+ Пентозофосфат + НАДФ×Н

 

Образующийся НАДФ×Н используется для восстановления молекулярного кислорода (О2), связанного с мембранным цитохромом (суt b-245), до надпероксидного аниона (О2-). Значительное потребление молекулярного кислорода, связанного с мембранным цитохромом фагоцита сопровождается резким потреблением клеткой кислорода из внеклеточной среды (возникает т.н. "кислородный взрыв")

суt b-245
.

 

НАДФ×Н + О2 НАДФ+ + О2-

 

Надпероксидный анион (О2-), в свою очередь, проявляя высокую активность, вступает во взаимодействие с ионами водорода (Н+), что сопровождается образованием пероксида водорода (Н2О2) и синглетного кислорода (1О2)

 
 
надперосид-дисмутаза

 


2 О2- +2 Н+ Н2О2 + 1О2

 

Надпероксидный анион (О2-) может спонтанно взаимодействовать и с образующимся пероксидом водорода, в результате чего появляются гидроксильные радикалы (×ОН), новые молекулы синглетного кислорода (1О2) и гидроксильные анионы (ОН-)

 

О2-+ Н2О2 ×ОН + ОН- +1О2

 

Кроме того, пероксид водорода (Н2О2) под действием миелоперосидазы используется фагоцитом для образования хлорноватистой кислоты (НОСl)

 
 
миелопероксидаза

 


Н2О2 +Сl- ОСl-2О

 

Образующиеся анионы хлорноватистой кислоты (анионы ОСl-) могут вступать во взаимодействие с молекулами воды, что приводит к образованию новых молекул синглетного кислорода (1О2)

 

ОСl- + Н2О 1О2 + Сl- + Н2О2

 

Образующиеся в результате кислородного взрыва в фагоците вещества (пероксид водорода, синглетный кислород, надпероксидный анион, гидроксильные радикалы, хлорноватистая кислота) обладают мощным бактерицидным действием и способны повреждать как бактерии, так и вирусы.

 

Наконец, в фагоците при "кислородном взрыве" параллельно с образованием перокида водорода, синглетного кислорода, надпероксидного аниона и свободных радикалов, обладающих бактерицидным действием и способных повреждать сам фагоцит, срабатывают и защитные механизмы, способствующие расщеплению пероксида водорода под действием каталазы и тем самым ограничению слишком бурного образования бактерицидных веществ

 
 
каталаза

 


2 Н2О22О + О2

 

ü кислороднезависимых механизмов. Эти механизмы обеспечиваются многообразными факторами (преимущественно белковой природы), содержащимися в гранулах фагоцитов. К числу этих факторов, оказывающих бактерицидное, бактериостатическое и противовирусное действие, относятся описанные ранее лизоцим, лактоферрин, катионные белки, интерферон и ряд других веществ, содержащихся в гранулах нейтрофилов и макрофагов.

Однако для того, чтобы фагоциты могли уничтожить чужеродные агенты посредством кислородзависимых и кислороднезависимых механизмов, антигенные субстанции должны попасть внутрь фагоцитов (т.е. фагоцитироваться ими), что возможно только при условии возникновения контакта определенных рецепторов мембраны фагоцита со стерически соответствующими им рецепторами мембраны антигена. Патогенные микроорганизмы постоянно претерпевают мутации и способны настолько видоизменяться, что выходят из-под контроля фагоцитирующих клеток (т.е. их рецепторы становятся недоступными для контакта с фагоцитами). В таком случае в уничтожении антигенов важную роль играют гуморальные неспецифические защитные механизмы, обеспечиваемые предсуществующими в крови системой комплемента и рядом других гуморальных факторов.

 

Гуморальные механизмы неспецифического иммунитета

Гуморальные механизмы неспецифической иммунной защиты обеспечиваются специальными гуморальными факторами (преимущественно белковой природы),… Ø находятся в плазме крови (т.е. постоянно предсуществуют в крови… Ø могут продуцироваться поврежденными клетками тканей организма и эндотелием сосудистой стенки,

Краткая характеристика системы комплемента

Ø часть из которых (9 белков, обозначаемых буквой С и имеющих определенный порядковый номер соответственно последовательности их открытия… Ø тогда как другие белки системы комплемента выступают в роли…  

СХЕМА ВЗАИМОДЕЙСТВИЯ И АКТИВАЦИИ КОМПОНЕНТОВ СИСТЕМЫ КОМПЛЕМЕНТА ПО КЛАССИЧЕСКОМУ ПУТИ

 

 


Альтернативный путь активации системы комплемента запускается сразу же после проникновения антигена в организм и, в отличие от классического пути, не требует накопления специфических антител по отношению к антигену (т.е. этот путь запускается не комплексом "антиген-антитело", а самим антигеном). Активация факторов системы комплемента по альтернативному пути начинается с взаимодействия С3b с мембраной патогена. Наличие компонента С3b в плазме крови обусловлено постоянным его спонтанным образованием в результате распада внутренней тиоэфирной связи в молекуле С3 на С3b и С3а под действием следовых количеств плазменных протеиназ, а также в результате очень медленной реакции тиоэфирной связи с водой. Фактор С3 отличается среди других компонентов системы комплемента самой высокой концентрацией в плазме крови, составляющей 1,2 мг/мл. Хотя большая часть компонентов С3b и С3а расщепляется плазменными ферментами, все же взаимодействие даже небольших количеств спонтанно образующегося С3b с мембраной патогена играет важную роль для активации системы комплемента по альтернативному пути.

Компонент С3b обладает способностью ковалентно связываться как с рецепторами мембран собственных клеток организма, так и проникших в организм корпускулярных антигенных структур. После взаимодействия компонента С3b с рецепторами мембраны какой-то клетки он изменят свою конформацию, в результате чего резко повышает сродство к фактору В, присутствующему в плазме крови. Между компонентом С3b, фиксированным на мембране какой-то клетки, и фактором В в присутствии ионов Мg2+ возникает нековалентная связь. Фактор В под воздействием связанного с ним компонента С3b изменяет свою пространственную структуру, в результате чего становится доступным действию сывороточной протеиназы (фактора D), расщепляющей фактор В на Ва и Вb. С этого момента каскад реакций, развертывающихся на мембране клеток хозяина и патогена, принципиально отличается. В частности, на мембране собственных клеток организма имеются два белка: DAF (decay accelerating factor) – фактор, усиливающий расщепление, и MCP (membrane cofactor proteolysis) – мембранный кофактор протеолиза, а в плазме крови – факторы Н.DAF и Н. Факторы MCP, DAF и Н взаимодействуют с комплексом С3bВb и вытесняют Вb из комплекса. Фактор Н обладает способностью связываться с С3b, делая его доступным для действия фактора I, находящегося в плазме крови и инактивирующего С3b. Инактивированный фактором I компонент С3b в дальнейшем расщепляется трипсиноподобными ферментами, присутствующими в плазме крови. Все эти факторы являются протекторными, поскольку защищают собственные клетки организма от разрушающего действия активированных компонентов системы комплемента.

В мембранах микробных клеток факторы DAF и MCP отсутствуют, а фактор Н плазмы крови хозяина взаимодействует только с клетками хозяина, в результате чего образовавшийся на поверхности этих клеток комплекс С3bВb не разрушается, более того, он стабилизируется присоединяющимся к нему регуляторным компонентом, присутствующим в плазме и называемым пропердином или фактором Р. Стабилизированный комплекс С3bВb действует подобно ферменту С3/С5-конвертазе, образующейся при активации комплемента по классическому пути. В частности, этот комплекс расщепляет новые молекулы С3 на С3а и С3b. Образовавшиеся новые молекулы С3b проявляют очень высокую реакционную способность и ковалентно связываются со свободными участками мембраны патогена. Таким образом, один активный комплекс С3bВb катализирует образование большого количества новых молекул С3b, которые продолжают связываться с мембраной патогена. Фиксированный на мембране патогена компонент С3b обладает способностью связываться с фактором С5, делая его доступным действию активного комплекса С3bВb, который катализирует расщепление молекул С5 на С5а (высвобождается в окружающее патоген пространство) и С5b (остается связанным с фактором С3b, зафиксированным на поверхности патогена). Образующиеся С5а вместе С3а являются хемоаттрактантами, привлекая в очаг воспаления фагоциты. Кроме участия активного компонента С3b в активации фактора С5, он оказывает и опсонизирующее действие, облегчая фагоцитоз антигенов нейтрофилами и макрофагами. Наконец С5b, связанный с мембраной патогена, присоединяет к себе последовательно факторы С6, С7, С8, в результате чего образуется комплекс С5b678, аналогичный таковому при активации системы комплемента по классическому пути и способствующий проникновению молекул фактора С9 в толщу мембраны патогена, формированию из молекул С9 пор, пропускающих воду и ионы натрия, что приводит к набуханию и лизису чужеродных клеток.

Таким образом, заключительные этапы активации системы комплемента по классическому и альтернативному пути идентичны и заканчиваются лизисом антигенных клеток.

 

СХЕМА ВЗАИМОДЕЙСТВИЯ И АКТИВАЦИИ КОМПОНЕНТОВ СИСТЕМЫ КОМПЛЕМЕНТА ПО АЛЬТЕРНАТИВНОМУ ПУТИ

       
   
 
 

 


Подытоживая роль системы комплемента в защите организма от различных чужеродных структур, необходимо отметить следующие ее функции:

Ø опсонизирующее действие компонентов системы комплемента по отношению к бактериям и вирусам (облегчение адгезии компонентами комплемента антигенов на поверхности фагоцитирующих клеток и последующего фагоцитоза). В частности, возникающий в результате активации фактора С3 компонент С3b, фиксированный на поверхности патогена, способен связываться и с определенными рецепторами на мембране фагоцитирующих клеток (макрофагов и нейтрофилов), что облегчает адгезию антигенных структур на поверхности фагоцитов (антиген и фагоцит взаимодействуют через своеобразный мостик, образованный компонентом С3b) и последующий фагоцитоз

Ø образование биологически активных фрагментов, которые могут выступать в качестве медиаторов воспаления и хемоаттрактантов. Так, возникающие при активации факторов С3 и С5 короткие фрагменты С3а и С5а оказывают активирующее влияние на фагоциты (особенно на нейтрофилы), усиливая потребление ими кислорода и образование метаболитов кислорода (пероксида водорода, синглетного кислорода, надперокисдного аниона и некоторых других), которые обладают выраженным противовирусным и противобактериальным действием. Благодаря такому активирующему действию факторов С3а и С5а на фагоциты, в них после фагоцитоза антигенов, происходящего с участием опсонизирующего фактора С3b, происходит кислородный взрыв, сопровождающийся образованием больших количеств пероксида и других кислородных метаболитов, которые оказывают бактерицидное действие. Компонент С5а служит мощным хемотаксическим агентом для нейтрофилов, способен расширять артериолы, увеличивая тем самым кровенаполнение капилляров, и повышать проницаемость капилляров. Такой эффект компонента С5 значительно пролонгируется лейкотриеном В4, который высвобождается при дегрануляции тучных клеток и активации нейтрофилов. Кроме того, компоненты С3а и С5а могут стимулировать дегрануляцию тучных клеток и базофилов, что сопровождается выбросом в кровь и ткани содержимого их гранул, включающих:

ü гистамин (вызывает местное расширение артериол и соответственно увеличение кровенаполнения капилляров, повышает проницаемость стенок капилляров, стимулирует хемокинез – спонтанное увеличение подвижности лейкоцитов)

ü гепарин (является антикоагулянтом, препятствующим свертыванию крови в очаге воспаления)

ü триптаза (активирует компонент комплемента С3, способствуя дальнейшей активации системы комплемента по альтернативному пути)

ü b-глюкозаминидаза (расщепляет глюкозамины, уменьшая плотность контакта между клетками, в том числе эндотелиальными)

ü хемотаксический фактор для эозинофилов (ХФЭ, под хемотаксисом понимают прямую миграцию гранулоцитов по градиенту концентрации медиаторов)

ü хемотаксический фактор для нейтрофилов (ХФН)

ü фактор, активирующий тромбоциты, что сопровождается выбросом содержимого гранул тромбоцитов

Ø повреждение мембран чужеродных клетокилизис этих клеток (достигается благодаря образованию в мембране патогенов на заключительных этапах активации системы комплемента из молекул фактора С9 пор, пропускающих воду и ионы натрия, что и приводит к набуханию и лизису чужеродных клеток).

 

Понятие о белках острой фазы

Наряду с системой комплемента в гуморальных неспецифических механизмах защиты организма от антигенов важную роль играют и белки острой фазы,… Ø С-реактивный белок (СRP – C-reactive protein). Этот белок… сывороточный амилоидный А-белок

Понятие о воспалении, медиаторы воспаления

Воспаление – это типический патологический процесс, представляющий собой местную реакцию кровеносных сосудов, соединительной ткани и нервной системы… Воспаление проявляется в нарушении кровообращения в определенном участке… Классическими внешними проявлениями воспаления в коже и слизистых оболочках (согласно пентаде Цельса - Галена)…

Некоторые других гуморальные и клеточные неспецифические механизмы противобактериальной и противовирусной защиты

Неспецифическим противовирусным и противобактериальным действием обладают следующие факторы: Ø лизоцим (фермент b-муромидаза), представляет собой основной белок,… Ø b-лизины,представляют собой группу белков, присутствующих в плазме крови и продуцируемых предположительно…

ОСНОВЫ МОЛЕКУЛЯРНОЙ ИММУНОЛОГИИ

Характеристика антигенов

Ø специфичность, проявляющаяся в определенных особенностях строения антигена, отличающих его от собственных макромолекул и структур… Ø иммуногенность – способность индуцировать иммунный ответ после… Специфичностьобусловлена определенными особенностями строения антигена, отличающими его от собственного антигенного…

Характеристика антител (иммуноглобулинов)

 

Несмотря на многообразные неспецифические механизмы иммунной защиты организма, он не мог бы быть надежно защищен от антигенов, если бы не существовали механизмы специфической иммунной защиты, поскольку антигены эволюционировали параллельно с эволюцией иммунной системы и выработали ряд механизмов, позволяющих некоторым из них

Ø избегать прямого контакта с фагоцитами (резко изменив пространственную структуру своих поверхностных рецепторов)

Ø полностью избежать активации системы комплемента по альтернативному пути

Ø либо после активации системы комплемента по альтернативному пути и образования на поверхности патогена опсонизирующего фагоцитоз фактора С3b все равно не фагоцитироваться фагоцитами.

Эволюционным предкам человека необходимо было выработать механизмы, которые служили бы для защиты от каждого конкретного микроорганизма, как бы много таких микроорганизмов ни было. Формирование таких механизмов было обеспечено благодаря развитию специфических средств иммунной защиты. Такие специфические средства иммунной защиты могут обеспечиваться

Ø либо антителами, которые продуцируются плазматическими клетками (потомками В-лимфоцитов) и строго специфически взаимодействуют с определенными антигенами, являющимися, как правило, внеклеточными паразитами,

Ø либо Т-лимфоцитами, которые обеспечивают уничтожение внутриклеточных паразитов и собственных генетически измененных клеток организма.

 

Антитела (иммуноглобулины) представляют собой белковые молекулы, которые строго специфически взаимодействуют с определенными антигенами и

Ø либо непосредственно их обезвреживают,

Ø либо облегчают последующий фагоцитоз антигенов фагоцитами,

Ø либо активируют систему комплемента по классическому пути, в результате чего образуется мембранноатакующий комплекс, вызывающий повреждение антигена.

 

Несмотря на большое разнообразие антител, все они имеют общий план строения. В частности, в основе антител лежит Y-образная молекула, состоящая из четырех цепей: двух легких и двух тяжелых. Тяжелые цепи более длинные и занимают центральное положение в молекуле, а легкие цепи относительно короткие и прикрепляются снаружи к верхним участкам (N-концевым участкам) тяжелых цепей, тогда как нижние участки тяжелых цепей (С-концевые участки) образуют "хвост" молекулы. Тяжелые цепи соединены между собой и с легкими цепями с помощью дисульфидных связей (S-S-связей). Антигенраспознающими участками антитела являются верхние его плечи, образованные верхними (N-концевыми) частями легкой и тяжелой цепей.

 

Рис. Структура иммуноглобулина G

В антигенраспознающих участках тяжелой и легкой цепей молекулы антитела, в свою очередь, различают:

Ø 3последовательно расположенные гипервариабельные области (CDR-области, от англ. Complementarity Determining Regions), эти области определяют специфичность антител, их аминокислотный состав сильно варьирует у различных антител. Именно эти области тяжелой и легкой цепей специфически (по принципу стереохимического соответствия) взаимодействуют с определенными антигенами. Причем антиген оказывается расположенным внутри плеча определенного антитела, т.е. окружен, с одной стороны гипервариабельными областями легкой, а с другой – тяжелой цепей. В гипервариабельных областях легких цепей обнаруживается большое количество аминокислотных остатков глицина, обуславливающих гибкость этих участков полипептидной молекулы. Существует предположение, согласно которому специфичность к антигену обеспечивается гипервариабельными участками тяжелой цепи, а "тонкая настройка" достигается благодаря хорошей конформационной гибкости легкой цепи

Ø и соединяющие эти гипервариабельные области промежуточные пептидные последовательности (аминокислотный состав которых мало отличается у разных антител), называемые каркасными областями (framework-областями). Каркасные области обеспечивают не только связь между гипервариабельными областями внутри цепи, но взаимодействие с каркасными участками вариабельного домена другой цепи (между вариабельными доменами легкой и тяжелой цепей).

 

Хвост молекулы антитела, образованный нижними (С-концевыми) частями двух тяжелых цепей, не обладает специфичностью (в молекулах антител, относящихся к одному классу, концевые части тяжелых цепей имеют сходное строение) и ответственен за связывание с рецепторами собственных клеток организма. Следовательно, у каждой молекулы антитела имеется как минимум:

ü два антигенраспознающих и соответственно антигенсвязывающих участка, соответствующих плечам молекулы и называемых Fab-фрагментами (от англ. fragment antigen binding)

ü и один неспецифичный фрагмент, обеспечивающий взаимодействие антитела с рецепторами собственных клеток организма и соответствующий хвосту молекулы антитела, образованному дистальными частями тяжелых цепей (т.н. Fc-фрагмент, получивший название от англ. fragment crystallizable).

 

В тяжелых цепях молекулы антител у места перехода плечей в хвост (т.е. в области "шейки" молекулы) содержится большое количество аминокислотных остатков пролина, что обеспечивает конформационную гибкость молекулы и необходимо для лучшего взаимодействия с антигенными детерминантами, находящимися на поверхности клеток. Область тяжелых цепей, соответствующая переходу плеча тяжелой цепи в хвост и обладающая высокой конформационной гибкостью, называется шарнирной областью антитела.

В зависимости от особенностей строения (аминокислотной последовательности) константных областей тяжелых цепей, молекулы иммуноглобулинов (Ig) классифицируются на 5 классов (или изотипов):

ü А(в их состав входят тяжелые цепи a-типа),

ü G (в их состав входят тяжелые цепи g-типа),

ü M(в их состав входят тяжелые цепи m-типа),

ü D (в их состав входят тяжелые цепи d-типа),

ü E (в их состав входят тяжелые цепи e-типа).

 

На основании особенностей строенияконстантных областей легких цепей иммуноглобулинов выделяют 2 разновидности (2 изотипа) легких цепей: c и l, причем в состав определенной молекулы антитела всегда входят идентичные легкие цепи (либо обе c-цепи, либо обе l-цепи). Таким образом, в пределах каждого класса иммуноглобулинов в зависимости от того, какие изотипы легких цепей входят в состав молекулы антитела, можно выделить два типа антител (например, иммуноглобулины класса G представлены двумя типами молекул: Gc и Gl, а класса М – Мc и Мl и т.д.).

Тяжелые и легкие цепи антител имеют сложную пространственную структуру. В частности, они состоят из последовательно расположенных глобулярных доменов, соединенных между собой линейными участками (состоящими приблизительно из 20 аминокислотных остатков). Каждый глобулярный домен имеет вид петли, которая объединяет в своем составе до 60 аминокислот и образуется в результате замыкания дисульфидных связей между определенными аминокислотными остатками цистеина внутри какой-то из цепей антитела.

 

Рис. Принцип доменной организации молекулы иммуноглобулина (на примере иммуноглобулина G). Каждый домен включает приблизительно 100-110 аминокислотных остатков; причем около 60 аминокислотных остатков домена оказываются заключенными в петлю дисульфидной (S-S-связью); около 20 аминокислотных остатков домена, которые не входят в состав петли, служат для соединения с другими доменами. Цифры обозначают последовательность аминокислотных остатков в полипептидных цепях. VL и CL – вариабельный и константный домены легкой цепи. VH – вариабельный домен тяжелой цепи, CH1 CH2 CH3 – константные домены тяжелой цепи.

 

 

Рис. Компьютерная модель иммноглоблина G

 

Внутри доменов пептидные фрагменты, входящие в состав домена, образуют компактно уложенную антипараллельную b-складчатую структуру, стабилизированную водородными связями (вторичная структура белка). Образованию b-складчатой структуры внутри домена способствуют аминокислотные остатки глицина. Таким образом, части тяжелых и легких цепей антител внутри доменов формируют b-складчатые структуры (вторичная структура белка), которые, в свою очередь, укладываются с образованием петлеобразных доменов (третичная структура белка). Благодаря слоистой b-складчатой структуре внутри домена три гипервариабельные области в каждой цепочке антитела оказываются максимально приближенными друг к другу.

 

Рис. Структура глобулярных доменов(вариабельного и константного)легкой цепи (по данным рентгеноструктурного анализа белков Бенс-Джонса). Одна поверхность каждого домена состоит из 4-х цепей (серые стрелки), образующих антипараллельную b-складчатую структуру, стабилизированную межцепочечными водородными связями (между группами СО и NH на протяжении всего пептидного остова). Другая поверхность каждого домена образована тремя цепями (розовые стрелки). Полипептидные цепи, образующие две поверхности домена связаны друг с другом межцепочечной дисульфидной связью (обозначена самой темной полосой). Описанная структура характерна для всех иммуноглобулиновых доменов. Особый интерес представляет расположение гипервариабельных областей в трех отдельных петлях вариабельного домена (гипервариабельные области обозначены красно-белыми полосатыми линиями, цифрами обозначены некоторые аминокислотные остатки в гипервариабельных областях). Эти гипервариабельные области, хотя и находятся на большом отдалении друг от друга в первичной структуре легкой цепи, но при образовании пространственной структуры они оказываются расположенными в непосредственной близости друг к другу, принимая участие в формировании антигенсвязывающего центра иммуноглобулина.

 

 

Рис. Пространственное расположение гипервариабельных участков внутри вариабельного домена тяжелой цепи иммуноглобулина G человека. Конформационная особенность вариабельного домена состоит в том, что все 3 гипервариабельных участка в результате формирования третичной структуры полипептидной цепи оказываются в непосредственной близости друг от друга (черные участки рисунка). Каркасные (инвариантные) участки обеспечивают взаимодействие с каркасными участками вариабельного домена легкой цепи. В результате взаимодействия вариабельного домена легкой и тяжелой цепей и формируется антигенсвязывающий центр иммуноглобулина.

Рис. Упрощенное двумерное изображение атигенсвязывающго центра антитела. Антигенсвязывающий центр антитела представляет собой полость, окруженную пептидными петлями гипервариабельных участков тяжелой и легкой цепей (на рисунке пронумерованы аминокислотные остатки гипервариабельных областей цепей).

 

 

Рис. Функциональное значение различных доменов иммуноглобулина G (схема). Домены легкой цепи обозначены буквами VL (вариабельный домен) и CL (константный домен); домены тяжелой цепи g-типа обозначены VH (вариабельный домен тяжелой цепи) и Сg1 Сg2 и Сg3 (константные домены тяжелой цепи)

 

Как уже было сказано выше, на основании особенностей строения константных областей тяжелых цепей молекул иммуноглобулинов, выделяют 5 их классов, каждый из которых характеризуется определенными особенностями организации Fc-фрагментов, обуславливающими то, с рецепторами каких эффекторных клеток организма будет взаимодействовать такой иммуноглобулин и некоторые другие его функциональные особенности. Преобладающим классом иммуноглобулинов во внутренних жидкостях организма (и преимущественно в тканевой жидкости) являются антитела класса G, которые в больших количествах продуцируются при вторичном иммунном ответе и обеспечивают защиту организма от бактерий, вирусов и токсинов. В частности, комплексы "IgG-антиген"

· усиливают фагоцитоз посредством опсонизации (т.е. комплексы "IgG-антиген" Fc-фрагментами IgG взаимодействуют с рецепторами мембраны нейтрофилов и макрофагов, повышая эффективность фагоцитоза антигенов),

· стимулируют внеклеточное уничтожение антигенов путем активации естественных киллеров (IgG, связанные с антигенами, своими Fc-фрагментами способны взаимодействовать не только с фагоцитами, но и с естественными киллерами, повреждающими мембрану антигена)

· обладают способностью взаимодействовать с компонентом С1 системы комплемента, активируя ее по классическому пути, что сопровождается появлением

ü медиаторов воспаления, обладающих хемотаксическим действием и привлекающих фагоциты и лимфоциты,

ü опсонизирующего фагоцитоз фактора С3b

ü и в конечном итоге образованием мембраноатакующих комплексов, разрушающих патогены.

Интенсивность синтеза IgG во многом зависит от проникновения антигенов в организм. IgG является единственным антителом, способным проникать через плацентарный барьер, поскольку на поверхности клеток трофобласта плаценты расположены рецепторы, связывающие Fc-фрагменты молекул материнских IgG. При этом связанные с рецепторами трофобласта молекулы IgG поглощаются путем опосредованного рецепторами эндоцитоза, после чего транспортируются в клетке трофобласта в составе окаймленных пузырьков, выводятся из клеток трофобласта, проходят через базальную его мембрану в соединительную ткань и капилляры плода. Переход IgG через плаценту обеспечивает передачу пассивного иммунитета от матери к плоду. Кроме того, в связи с присутствием IgG в молоке, он принимает участие в пассивной специфической иммунной защите ребенка в период грудного вскармливания.

Иммуноглобулины класса А представляют собой основной класс иммуноглобулинов в секретах экзокринных желез (молочных, слезных, слюнных, потовых желез, желез слизистой оболочки пищеварительной трубки и бокаловидных клеток дыхательной и мочеполовой трубок). IgА выделяется на поверхность слизистых оболочек, где и взаимодействует с антигенами. Следовательно, IgА участвует в защитной функции организма, укрепляя барьер в слизистой оболочке пищеварительного тракта, дыхательной и мочеполовой трубок против инфекций. Молекула иммуноглобулина А, содержащаяся в составе секрета каких-то желез представляет собой димер, стабилизированный дополнительной J-цепью. Причем димерные молекулы IgА образуются в самой плазматической клетке. После чего димерные молекулы IgА взаимодействуют с определенными полипептидными рецепторами на базальной поверхности секреторной клетки. IgА-рецепторы в комплексе с димером IgА путем эндоцитоза проникают внутрь секреторной клетки и наряду с опосредованием фагоцитоза секреторной клеткой, обеспечивают защиту IgА от расщепления под действием протеолитических ферментов синтезируемых клеткой секретов. После секреции IgА через апикальную поверхность секреторной клетки на поверхность слизистой оболочки рецептор для IgА частично расщепляется и его часть, оставшаяся связанной с димером IgА после такого расщепления, носит название секреторного компонента. IgА играет важную роль в защите слизистых оболочек от инфекций, которая обеспечивается его способностью препятствовать проникновению связанных с IgА микроорганизмов через эпителиальный пласт слизистой оболочки в ткани. В плазме крови молекулы IgА имеют преимущественно мономерное строение.

Рис. Механизм секреции иммуноглобулина А на поверхность слизистой оболочки. Эпителиальные клетки слизистой синтезируют иммуноглобулиновый рецептор (Ig-рецептор), который встраивается в мембрану базальной поверхности клетки. Димер Ig А связывается с этим рецептором, путем эндоцитоза, проникает внутрь клетки, транспортируется к апикальной ее поверхности, через мембрану которой путем экзоцитоза выводится на поверхность слизистой оболочки. При расщеплении рецептора на поверхности слизистой оболочки высвобождается Ig А, который все еще связан с частью рецептора, получившей название секреторного компонента. Транспорт Ig G через плаценту возможно происходит подобным образом с помощью рецепторов для Ig G, расположенных на поверхности клеток трофобласта.

 

Иммуноглобулины класса Е содержатся в сыворотке крови человека, как правило, в небольших концентрациях, обладают способностью своими Fc-фрагментами взаимодействовать с рецепторами тучных клеток и базофилов. После присоединения к поверхностной мембране тучных клеток и базофилов комплексов "IgЕ-антиген" или взаимодействия фиксированных на поверхности мембраны этих клеток молекул IgЕ с определенными антигенами происходит дегрануляция тучных клеток и базофилов, сопровождающаяся выделением в окружающую тканевую жидкость гистамина (расширяет артериолы, повышает проницаемость капилляров, в больших дозах суживает венулы) и гепарина (ингибирует образование нерастворимого фибрина и его отложение на внутренней поверхности сосудистой стенки, тем самым повышая проницаемость капилляров). Выброс этих медиаторов воспаления базофилами и тучными клетками обуславливает многие проявления воспалительных и аллергических реакций, привлекая в очаг воспаления неспецифические и специфические защитные агенты, что способствует уничтожению различных паразитов (в связи с этим уровень IgЕ в крови возрастает не только при аллергиях, но и при паразитарных инвазиях). Таким образом, основная физиологическая функция IgЕ, очевидно, состоит в защите внешних слизистых оболочек организма путем локальной активации факторов крови и эффекторных клеток благодаря индукции острой воспалительной реакции. Инфекционные агенты, способные прорвать линию обороны, созданную IgА, будут связываться со специфическими IgЕ на поверхности тучных клеток, в результате чего тучные клетки начнут дегранулировать и высвобождать свои секреты (вазоактивные амины и хемотаксические факторы) в окружающую ткань, что, в свою очередь, вызовет приток циркулирующих в крови IgG, компонентов комплемента, нейтрофилов и эозинофилов в инфицированный очаг. В этих условиях способность эозинофилов повреждать гельминтов, нагруженных IgG, и усиленная продукция IgЕ в ответ на проникновение этих паразитов в организм будут обеспечивать эффективную защиту.

Иммуноглобулины класса М представляют собой пентамерные молекулы (т.е. состоят из пяти Y-образных субъединиц, расположенных радиально и объединенных в единую молекулу с помощью единственной J-цепи, которая через посредство дисульфидных связей взаимодействует с тяжелыми цепямимономеров). При этом Fc-фрагменты каждого мономера обращены к центру молекулы и друг к другу, а Fab-фрагменты – кнаружи. J-цепь и инициирует сборку пентамерной молекулы IgМ. В связи с пентамерным строением своих молекул IgМ имеют самую большую среди всех классов антител молекулярную массу (950 кД).

Иммуноглобулины М представляют собой первый класс антител, продуцируемых развивающимися В-лимфоцитами при первичном попадании антигена в организм и содержащихся в наибольших количествах в периферической крови (т.е. IgМ образует первую линию обороны при бактериемии). IgМ благодаря большому размеру своей молекулы в комплексе с антигеном способен в единичном количестве активировать компонент С1 системы комплемента, запуская процесс активации этой системы по классическому пути, тогда как для активации компонента С1 комплексом "IgG-антиген" необходимо присоединение к его молекуле 5 комплексов " IgG-антиген".

Кроме активации системы комплемента, IgМ оказывает опсонизирующее действие при фагоцитозе. Более того, в связи с пентамерным строением IgМ способен вызывать агглютинацию и обусловленный этим лизис антигенов. Теоретически молекула IgМ может связать 10 антигенов, но, как правило, эффективно взаимодействует только с 5-ю, что обусловлено определенными стерическими ограничениями, возникающими из-за недостаточной гибкости молекулы. Мономерные молекулы IgМ представлены на поверхности В-лимфоцитов, образуя рецепторы для взаимодействия с антигеном.

Рис. Структура иммуноглобулина М

 

Иммуноглобулины класса D присутствуют в сыворотке крови в ничтожно малых количествах, но зато преимущественно связаны с мембраной лимфоцитов и, очевидно, выступают в роли рецепторов лимфоцитов, позволяющих им взаимодействовать между собой, благодаря чему обеспечивается контроль за активацией и супрессией лимфоцитов.

 

Геномная организация генов, кодирующих иммуноглобулины

Огромное разнообразие молекул иммуноглобулинов в пределах каждого класса обусловлено: Ø во-первых, большим количеством генов, кодирующих разные участки… Ø во-вторых, определенными изменениями,происходящими в геноме незрелых В-лимфоцитов в процессе их деления и…

Антигенраспознающие рецепторы иммуннокомпетентных клеток

 

Для активации иммуннокомпетентных клеток необходимо «узнавание» ими определенных чужеродных субстанций, которое делает возможным взаимодействие иммуннокомпетентных клеток с антигенами и приводит к запуску специфических иммунных реакций (гуморальных и клеточных). «Узнавание» Т- и В-лимфоцитами антигенов осуществляется с помощью определенных антигенраспознающих рецепторов, расположенных на поверхности этих клеток и характеризующихся определенными особенностями строения для разных иммунокомпетентных клеток.

 

Антигенраспознающие рецепторы В-лимфоцитов

Антигенраспознающие рецепторы В-лимфоцитов представляют собой мономерные формы иммуноглобулина М, встроенные в плазматическую мембрану В-лимфоцита и… Рис. Схема строения антигенраспознающего рецептора В-лимфоцитов и механизма их активации после взаимодействия с…

Механизм распознавания антигенов Т-лимфоцитами, структурная организация антигенраспознающих рецепторов Т-лимфоцитов

Антигенраспознающие рецепторы Т-лимфоцитов в отличие от таковых В-лимфоцитов не являются иммуноглобулинами и распознают антиген «не в чистом виде»,… Главный комплекс гистосовместимости (МНС от англ. major histocompatibility… Ø полигенность – наличие нескольких неаллельных, близкосцепленных генов, кодирующих сходные по своей структуре…

Генетический контроль молекул антигенраспознающих рецепторов Т-лимфоцитов

Организация генов, кодирующих a и b цепи Т-клеточных рецепторов во многом аналогична таковой для легких и тяжелых цепей иммуноглобулинов в… Ø 100 V-генов, каждый из которых кодирует бóльшую часть… Ø 50 J-генов, кодирующих меньшую часть вариабельного домена.

ОСНОВЫ КЛЕТОЧНОЙ ИММУНОЛОГИИ

 

Краткая характеристика основных этапов развития Т- и В-систем иммунитета

Развитие Т- и В-систем иммунитета включает в себя два основных этапа: доантигенный и постантигенный. Доантигенный этап формирования специфического иммунитета состоит из комплекса… Ø онтогенетическую закладку систем Т- и В-иммунитета

Характеристика механизмов клеточного специфического иммунитета

  Т-система иммунитета включает: ü тимус (корковое его вещество, являющееся местом дифференцировки потомков стволовой клетки, мигрирующих из…

Краткая функциональная характеристика наиболее изученных цитокинов

ü регуляции иммунного ответа, ü осуществлению взаимодействия между различными иммуннокомпетентными… ü уничтожению некоторых антигенных субстанций (в частности, опухолевых клеток)

Доантигенный этап развития Т-лимфоцитов

Взаимодействие малодифференцированного лимфобласта с эпителиоретикулоцитами субкапсулярной области индуцирует экспрессию в нем первого… В результате взаимодействия таких Т-лимфоцитов, мигрирующих из субкапсулярной… Определяющую роль в положительной селекции Т-лимфоцитов играет степень сродства ТКР Т-лимфоцитак молекуле МНС. Если…

Основные этапы доантигенного развития Т-лимфоцитов

субкапсулярная зона коркового вещества тимуса      

Механизмы активации наивных Т-лимфоцитов

В отличие от В-системы иммунитета, которая нейтрализует антиген посредством гуморальных факторов (антител), Т-система иммунитета непосредственно… Первичное распознавание предварительно обработанного макрофагами антигена… Оказавшийся в лимфоидной ткани антиген провоцирует усиление рециркуляции лимфоцитов. При этом огромное количество…

Дифференциальная роль различных антигенпрезентирующих клеток в инициации иммунного ответа

Как уже было сказано ранее, наивные Т-лимфоциты не способны вступать в контакт с нативным антигеном, не подвергнутым первоначальному расщеплению в… Ø макрофаги Ø дендритные клетки

Характеристика эффекторных форм Т-лимфоцитов

Различают следующие разновидности эффекторных форм Т-лимфоцитов: Ø Т-киллеры (цитотоксические Т-лимфоциты, CD8 Т-клетки),… Ø CD4 Т-клетки воспаления (ТН1-клетки), дифференцируются из наивных Т-лимфоцитов в результате контакта их…

Формы клеточного иммунного ответа

Реакция гиперчувствительности замедленного типа (ГЗТ). Впервые эта реакция была воспроизведена в эксперименте немецким бактериологом Робертом Кохом…   Реакция трансплантат против хозяина (РТПХ) возникает при пересадке реципиенту аллотрансплантата, содержащего…

Характеристика механизмов гуморального специфического иммунитета

  В-система иммунитета включает: ü красный костный мозг, в котором осуществляется первичный (доантигенный) В-лимфоцитопоэз

Доантигенный этап дифференцировки В-лимфоцитов

Первичный (антигеннезависимый) В-лимфоцитопоэз происходит в красном костном мозге и включает несколько этапов, каждый из которых характеризуется… ü стволовая кроветворная клетка – общий предшественник всех ростков… ü общий лимфоидный предшественник для Т- и В-клеточного пути развития. Представлен наиболее ранней лимфоидной…

Механизм активации наивных В-лимфоцитов и превращения их в зрелые антителопродуцирующие клетки

Как уже было отмечено ранее, вторичный лимфоцитопоэз В-лимфоцитов для полноценного своего развития требует стимуляции В-клетки двумя сигналами: ü специфическим антигеном, вступающим во взаимодействие с… ü цитокинами, продуцируемыми CD4-Т-хелперами. При этом необходимо непосредственное взаимодействие В-лимфоцитас…

Эффекторная функция антител различных классов

 

Антитела проявляют высокую специфичность в отношении определенных антигенов, вызвавших их образование, и обеспечивают изоляцию и уничтожение патогена 3 основными способами:

ü нейтрализацией

ü опсонизацией

ü активацией системы комплимента.

 

При этом независимо от принадлежности антител к тому или иному классу, все они характеризуются строгой специфичностью по отношению к антигену, вызвавшему их образование. Различия же по изотипам антител обусловлены особенностями строения константной части цепей их молекулы. Вместе с тем, именно константная область молекул антител в зависимости от конкретной иммунологической ситуации мобилизует комплекс реакций, направленных на завершение иммунного процесса – окончательную элиминацию патогена.

 

Распределение антител в организме.Местом продукции антител в организме является лимфоидная ткань, а основными воротами для проникновения инфекции – слизистые оболочки полых органов (дыхательной, мочеполовой, пищеварительной трубок) и кожа. Следовательно, места проникновения патогена в организм могут быть удалены от структур, продуцирующих антитела, в связи с чем антитела, для того чтобы попасть в очаг проникновения антигена, должны преодолеть эндотелиальные и эпителиальные барьеры. Способность проникать через такие барьеры является неодинаковой у антител различных классов, в связи с чем распределение различных классов антител в организме подчиняется определенной закономерности, и патоген в зависимости от места своего проникновения в организм сталкивается преимущественно с определенными изотипами антител.

При первичном попадании патогена в организм образуются IgМ (т.н. ранние антитела), которые характеризуются относительно низким сродством к антигенам в отличие от антител такой же специфичности, но других классов. Низкий аффинитет IgМ к антигенам обусловлен отсутствием их селекции в лимфоидной ткани, для осуществления которой требуется около 5-6 дней после вступления в реакцию активированных В-клеток. Между тем, низкая аффинность IgМ к антигенам компенсируется большим количеством (10 штук) и высокой подвижностью их антигенсвязывающих участков, что обеспечивает достаточно эффективное многоточечное взаимодействие IgМ с корпускулярными (в том числе с бактериальными) антигенами. Антитела класса М способны уничтожать антиген не только путем его нейтрализации, но и путем достаточно эффективной активации системы комплимента (всего один иммунный комплекс «IgМ-антиген» способен самостоятельно активировать фактор С1 системы комплемента, тогда как для активации одной молекулы данного фактора иммунными комплексами, образованными другими антителами, необходимо не менее 5-ти иммунных комплексов). Обычным «местом действия» IgМ является кровоток в связи с высокой молекулярной массой IgМ и обусловленными этим трудностями проникновения через эндотелий сосудов. Вместе с тем, при повышении проницаемости сосудов под влиянием вазоактивных веществ, образуемых в очаге воспаления, IgМ способен проникать в места локальной концентрации антигена.

Антитела других классов (G, А, Е) в связи с меньшими размерами и молекулярным весом в сравнении с IgМ, а также наличием специальных механизмов взаимодействия с эпителиальными клетками значительно легче преодолевают клеточные барьеры и достаточно широко распространяются по организму от мест синтеза. Кроме того, антитела этих классов проявляют гораздо более высокое сродство к антигену по сравнению с IgМ в связи с прохождением клонов плазматических клеток, их продуцирующих, селекции по наибольшему сродству к антигену. Эффективная продукция этих антител осуществляется с некоторой задержкой в сравнении с продукцией IgМ, поскольку переключение синтеза иммуноглобулинов с одного изотипа на другой и селекция клонов плазматических клеток по степени их сродства к антигену требует определенного времени. Вместе с тем, некоторая задержка в синтезе антител классов G, А, Е компенсируется их большей функциональной активностью, обусловленной повышением их аффинности и способности проникать через эпителиальные пласты.

Основным классом антител в крови и тканевой жидкости является IgG, который активно опсонизирует фагоцитоз корпускулярных антигенов и служит достаточно сильным активатором системы комплемента. IgG широко распространен в межклеточных щелях, где имеется доступ к вспомогательным клеткам и молекулам.

IgА преобладает на поверхности слизистых оболочек в связи с тем, что, являясь секреторным иммуноглобулином, секретируется в составе секретов большинства экзокринных желез. Вместе с тем, на поверхности слизистых оболочек вспомогательные клеточные и молекулярные элементы иммунной реактивности практически отсутствуют, и способность IgА обезвреживать патогенны обеспечивается их нейтрализацией.

IgЕ представлен в очень небольшим количестве в крови и внеклеточной жидкости. Его хвостовой (Fc-фрагмент) характеризуется цитофильностью по отношению к тучным клеткам и базофилам. Основным же местом локализации тучных клеток в организме является соединительная ткань кожи, слизистых оболочек и периваскулярная соединительная ткань. Способность IgЕ уничтожать патогены достигается благодаря активации иммунными комплексами IgЕ-антиген тучных клеток и базофилов, дегрануляция которых сопровождается выбросом медиаторов воспаления, запускающих воспалительную реакции и провоцирующих повышенную чувствительность аллергического типа к антигену в месте его проникновения в организм. Кроме того, медиаторы воспаления, высвобождаемые из тучных клеток, могут провоцировать кашель, рвоту и чихание, что дополнительно освобождает организм от патогена.

 

Транспорт антител через эпителиальные барьеры. Наиболее приспособлен для транспорта через эпителиальные барьеры слизистых оболочек IgА в связи с наличием специального механизма его секреции в составе секретов экзокринных желез. В частности, димер IgА, продуцируемый плазматическими клетками соединительной ткани слизистых оболочек, вступает в контакт со специальным рецептором, расположенным на базальной поверхности эпителиальных клеток, после чего такой комплекс фагоцитируется клеткой и в составе фагоцитарной вакуоли транспортируется к апикальной ее поверхности и путем экзоцитоза выводится за пределы секреторных клеток на поверхность эпителиальных пластов или в состав секретов экзокринных желез. За пределами секреторной клетки под действием определенных ферментов часть рецептора, ассоциированного с димерным IgА отщепляется, тогда как другая его часть (т.н. секреторный компонент) остается связанной с IgА и защищает его от разрушающего действия ферментов слизистой. Комплекс IgА-секреторный компонент осуществляет свою нейтрализующую функцию по отношению к антигенам непосредственно на поверхности слизистых оболочек.

Особую защитную функцию IgА материнского происхождения, поступающий с молоком при грудном вскармливании, выполняет у новорожденных, не имеющих еще собственных развитых механизмов гуморального иммунитета. При этом IgА, поступающий с материнским молоком оседает на внешних слизистых покровах преимущественно пищеварительной и отчасти дыхательной трубок и защищает их от антигенов, проникающих из внешней среды.

Другим важным классом антител, обеспечивающих пассивный иммунитет новорожденного, является IgG, который в период внутриутробного развития транспортируется в организм эмбриона через плаценту и попадает непосредственно в кровоток плода, откуда может диффундировать в соединительную ткань органов. При рождении ребенок имеет тот же набор специфических молекул IgG, что и его мать, который защищает его от патогенов, проникающих во внутреннее межклеточное пространство.

 

Способы уничтожения патогена антителами. Уничтожение антигенов иммуноглобулинами осуществляется 3 основными путями: нейтрализацией, опсонизацией и в результате активации системы комплемента.

Нейтрализация патогена антителом. Патогенез большинства инфекционных бактериальных заболеваний связан с активностью бактериальных токсинов, повреждающих и дезорганизующих функции соматических клеток. Например, дифтерийный токсин, подавляя синтез белка, приводит к гибели эпителиальных клеток и развитию миокардита. Холерный токсин активирует аденилатциклазу в эпителиальных клетках кишечника, что приводит к повышению уровня цАМФ и является причиной изменений в кишечном эпителии, влекущих за собой нарушение водно-солевого обмена. При этом начало процесса интоксикации связано со способностью токсинов взаимодействовать с соответствующими рецепторами на поверхности клеток-мишеней макроорганизма. Специфические же антитела, способные взаимодействовать с такими токсинами, связывая их, препятствуют их действию на определенные соматические клетки-мишени организма и развитию процесса интоксикации.

Для большинства токсинов способность адсорбироваться на соматических клетках организма и оказывать патологическое действие обусловлена определенными участками пептидного токсина. Это свойство токсинов используют для приготовления вакцин. Обработка нативного токсина тем или иным способом, при котором разрушается его участок, способный взаимодействовать с соматическими клетками организма-реципиента, приводит к уничтожению его патологического действия, но при этом сохранению антигенной активности, что обеспечивает получение безвредного иммунного материала.

Наряду с нейтрализующим влиянием антител на бактериальные токсины, они способны оказывать и нейтрализующее действии непосредственно на бактерии, их продуцирующие. При этом нейтрализующее действие антител на бактерии достигается благодаря их способности препятствовать продвижению возбудителей к местам своего оптимального существования. Так, многие возбудители инфекционных заболеваний (туберкулеза, лепры, чумы, туляремии) являются внутриклеточными патогенами, а других (например, гонореи) – локализуются на поверхности эпителиальных клеток. При проникновении таких возбудителей в организм они могут нейтролизоваться антителами еще до проникновения в поражаемые ими соматические клетки, что будет препятствовать развитию заболевания.

Нейтрализующее действие оказывают антитела и в отношении некоторых вирусов, связываясь с ними и препятствуя проникновению в поражаемые клетки. Например, вирус гриппа имеет поверхностный белок гемагглютин, который взаимодействуя с сиаловыми кислотами гликопротеинов, экспрессирующихся на поверхности эпителиальных клеток дыхательных путей, проникает в них. Препятствием к вирусному заражению эпителиальных клеток является секреторный IgА.

 

Опсонизация и разрушение антигенов антителами. Нейтрализация антигенов представляет лишь начальный этап освобождения организма от патогенов. Следующий, наиболее результат уничтожения антигенов связан с опсонизацией растворимых и корпускулярных антигенов, их захватом фагоцитирующими или иными иммунологически активными клетками и последующим внутриклеточным разрушением патогенов.

Процесс опсонизации осуществляется благодаря взаимодействию Fc-фрагментов антител, нагруженных антигенами (бактериями, вирусами, токсинами), с определенными рецепторами иммунологически активных клеток. Fc-рецепторы фагоцитов представляют собой семейство молекул, относящихся к суперсемейству иммуноглобулинов, каждый член которого распознает иммуноглобулин одного или нескольких родственных изотипов.

Участие фагоцитов в уничтожении иммунных комплексов. В организме даже при условии очень напряженного гуморального иммунного ответа количество специфических антител к тому или иному антигену всегда значительно меньше общего количества иммуноглобулинов, постоянно циркулирующих в крови и тканевой жидкости. В связи с этим должны существовать механизмы, дифференцирующие свободные иммуноглобулины от иммуноглобулинов, связавших антиген. При агрегировании нескольких антител на одном корпускулярном антигене на нем появляется несколько Fc-валентностей для взаимодействия с Fc-рецепторами фагоцитирующих клеток. При этом каждая отдельная связь Fc-фрагмента антител с соответствующим рецептором фагоцита, характеризующаяся низкоаффинным взаимодействием, неэффективна для провокации фагоцитарного захвата антигена. Вместе с тем, на бактериальных антигенах агрегирует значительное количество антител, в результате чего формируется много точек взаимодействия Fc-фрагментов иммуноглобулинов с Fc-рецепторами на поверхности фагоцитирующей клетки, что повышает авидность взаимодействия и, как следствие, предопределяет успешное прохождение фагоцитоза.

Другой механизм опсонизации фагоцитоза антителами связан с изменением конформации Fc-фрагмента антитела после взаимодействия его антигенсвязывающих центров с антигеном. Конформационная модификация Fc-фрагмента антитела приводит к повышению аффинности взаимодействия с фагоцитом, что облегчает фагоцитоз иммунных комплексов. Этот механизм особенно важен при фагоцитозе молекулярных антигенов (таких, как токсины бактерий).

Процесс поглощения антигена фагоцитами сопряжен с активацией внутриклеточных молекулярных механизмов разрушения нафагоцитированного материала, который происходит в фаголизосомах ферментативным и кислородзависимым путем. Кроме того, повреждающее действие на антигены оказывает само кислое содержимое фаголизосом (рН 3,5-4). Несмотря на эффективность фагоцитоза как комплексной реакции на антиген, в организме имеются дополнительные клеточные механизмы, также направленные на элиминацию чужеродных агентов.

Роль натуральных киллеров в уничтожении иммунных комплексов. При вирусной инфекции помимо Т-киллеров в реакцию уничтожения вирусинфицированных клеток могут вступать натуральные киллеры, на поверхности которых имеются Fc-рецепторы для антител класса G (G1, G3). Естественные киллеры своими Fc-рецепторами вступают во взаимодействие с иммунными комплексами "IgG-антиген", в качестве антигена в которых выступает вирусзараженная клетка. После взаимодействия с имунными комплексами естественные киллеры активируются и выделяют содержимое своих гранул, связанных с плазматической мембраной, на поверхность. В составе гранул естественных киллеров содержатся вещества, подобные таковым в гранулах Т-киллера, в частности, перфорин и гранзимы. Перфорин встравивается в мембрану антигена (вирусинфицированной клетки), образует в ней поры, предопределяя дальнейшее насасывание клеткой воды и ее гибель.

Роль тучных клеток в обезвреживании антигенов. Тучные клетки (аналоги базофилов крови) концентрируются главным образом в местах наиболее вероятной встречи с патогенами внешней среды (в соединительной ткани кожи, подслизистой дыхательной, пищеварительной и мочеполовой трубок, в периваскулярной соединительной ткани) и обеспечивают борьбу с патогенами, проникшими из окружающей среды через эпителиальные пласты внутрь организма. На поверхности тучных клеток содержаться Fc-рецепторы для IgЕ, проявляющие высокую аффинность к иммунноглобулинам этого класса. Между тем, высокая аффинность рецепторного взаимодействия Fc-рецепторов тучных клеток с IgЕ не является гарантией активации тучных клеток. Для активации тучных клеток необходимо еще и чтобы антиген за счет перекрестного сцепления с соседними IgЕ образовал агрегаты на поверхности тучной клетки. Только после образования антигенных агрегатов на поверхности тучных клеток происходит их активация, сопровождающаяся первоначальным выделением гистамина и гепарина. Данные медиаторы воспаления характеризуются кратковременным периодом жизни, но за время своего существования обуславливают локальное увеличение кровотока и проницаемости сосудов в месте активации тучных клеток проникшим патогеном, выявившим сродство к иммунноглобулинам класса Е. Возникающая реакция под действием гистамина и гепарина развивается очень быстро и проявляется в образованиии отека (вследствие усиленной эксудации плазмы), миграции лейкоцитов (прежде всего, нейтрофилов) в очаг инфицирования, развитии покраснения и зуда (в случае развертывания этих процессов в соединительной ткани кожи). Иными словами в очаге проникновения патогена благодаря активации тучных клеток имунными комплексами "IgЕ-антиген" инициируется острая воспалительная реакция, сама по себе носящая защитный характер и обеспечивающая локализацию и последующее уничтожение патогена.

Гистамин и гепарин характризуются небольшой продолжительностью жизни, и их количество в очаге проникновения патогена начинает снижаться сразу после дегрануляции тучных клеток. Между тем, за сравнительно короткий промежуток своего существования гистамин и гепарин успевают инициировать продукцию других медиаторов, в частности, лейкотриенов. Лейкотриены, подобно гистамину и гепарину, также проявляют вазоактивность, но при этом оказывают более выраженное влияние на сосудистый тонус и проницаемость. Кроме того, активированные тучные клетки синтезируют и секретируют ряд цитокинов, оказывающих влияние не только на течение воспалительной реакции, но и способствующих осуществлению антигензависимого лимфоцитопоэза. Так, тучные клетки вырабатывают ФНО-α и интерлейкин-4. ФНО-α обуславливает пролонгирование воспалительной реакции, что способствует локализации патогена в местах его проникновения в организм. Интерлейкин-4, необходим для завершения антигензависимой дифференцировки Т-хелперов, способствует повышению продукции IgE плазматическими клетками (что делает возможным поддержание активности тучных клеток в очаге воспаления благодаря дальнейшей их активации комплексами "IgЕ-антиген"), выступает в роли ростового фактора и для предшественников Т-киллеров (CD8 Т-клеток), способен активировать экспрессию молекул II класса в макрофагах (что способствует усилению их антигенпредставляющей функции), усиливает экспрессию рецепторов к Fc-фрагментам IgG в макрофагах, тем самым улучшая условия для фиксации иммунных комплексов на поверхности макрофагов и последующего их фагоцитоза.

Первоначально воспалительная реакция с участием IgE и тучных клеток рассматривалась как реакция аллергического типа, но в настоящее время становится понятным ее более широкое значение как фактора ограничения распространения патогена по организму и инициации его уничтожения.

Роль антител в активации системы комплимента для уничтожения антигенов. Одним из способов уничтожения антигенов антителами является активация системы комплемента. Иммунные комплексы, состоящие из антител, ассоциированных с определенными специфическими для них антигенами, способны активировать систему комплемента по классическому пути (активируя фактор С1). В результате активации системы комплемента образуются:

ü опсонизирующий фагоцитоз фактор С3b, соединенный с патогеном и обладающий способность взаимодействовать с рецепторами фагоцитов (нейтрофилов и макрофагов). Данный фактор выступает в качестве связующего мостика между антигеном и фагоцитом, облегчая фиксацию антигена на поверхности фагоцита, что само по себе путем активации помембранного актомиозинового комплекса фагоцитов инициирует фагоцитоз

ü медиаторы воспаления (короткие фрагменты системы комплемента, возникающие в результате ограниченного фагоцитоза копонентов этой системы, они проявляют вазоактивное и хемотаксическое действие, облегчая течение воспалительной реакции в месте проникновения патогена и соотвественно активации системы комплемента)

ü мембранноатакующий комплекс, представленный несколькими молекулами фактора С9, встраивающимися в мембрану патогена и образующими поры, через которые происходит насасывание патогеном воды и вызванный этим его лизис.

 

Таким образом, активация иммунными комплексами (комплексами "антиген-антитело") системы комплемента предопределяет образование целого ряда защитных факторов, одни из которых (фактор С3b) увеличивают вероятность и эффективность фагоцитоза патогена, другие (короткие фрагменты компонентов системы комплимента) – способствуют развертыванию местной воспалительной реакции в очаге проникновения патогена, что обеспечивает его локализацию и последующее уничтожение, а третьи (встроенный в мембрану патогена фактор С9) – непосредственно уничтожают патоген.

 

Подводя итог клеточным механизмам специфического иммунного реагирования организма, необходимо отметить, что Т- и В-системы иммунитета, представленные в организме человека и животных, выполняют одну общую функцию – элиминацию чужеродных в антигенном отношении биологических структур, но реагируют главным образом на разные по своей природе антигены. Так, фунукция Т-системы направлена преимущественно на уничтожение клеточного антигенного материала (чужеродных трансплантатов, раковых и вирустрансформированных клеток), тогда как В-система действует по отношению к бактериальным антигенам (самим бактериям и молекулярным продуктам их жизнедеятельности). При этом подобная функциональная градация Т-и В-систем на основании природы обезвреживаемого антигенного материала является несколько условной. Ни одна из этих специфических систем иммунного реагирования не работает полностью автономно, доказывая относительность принципа "все или ничего" в живом организме. Так, в случае реакции макроорганизма против клеток трансплантата задействованы как определенные специфичные в отношении антигенов этих коеток Т-киллеры, так и специфические антитела. С другой стороны, антибактериальная активность В-системы реализуется в польной мере только при подключении к ответу Т-хелперов и Т-клеток воспаления.

В целом имунная форма защиты организма во всем многообразии клеточных и молекулярных "участников" иммунных реакций создает мощный заслон от любого чужеродного в антигенном отношении материала, с которым может столкнуться организм в процессе индивидуальной жизни.

 

 

ХАРАКТЕРИСТИКА ОСНОВНЫХ ЭТАПОВ РАЗВИТИЯ

Т- и В-СИСТЕМ ИММУНИТЕТА


КОМПОНЕНТЫ Т-СИСТЕМЫ ИММУНИТЕТА

ХАРАКТЕРИСТИКА ДОАНТИГЕННОГО ЭТАПА РАЗВИТИЯ

Т-ЛИМФОЦИТОВ

 
 


Основные этапы доантигенного развития Т-лимфоцитов

Основные этапы доантигенного развития Т-лимфоцитов

субкапсулярная зона коркового вещества тимуса      

Механизмы активации наивных Т-лимфоцитов

(антигензависимый Т-лимфоцитопоэз, примированиение)

I этап "Презентация антигена"

 

 


II этап "Поиск Т-лимфоцитами антигенов определенной специфичности"

- переход из сосудистого русла в периферические ткани

 

 


Поиск специфичных антигенных детерминант на поверхности антигенпрезентирующих клеток

 

 


III этап "Активация антигенраспознающего Т-клеточного рецептора и передача сигнала внутрь клетки"

 

 


Особенности активированных Т-лимфоцитов в сравнении

С наивными их предшественниками

     
 
 
   
 
   

 

 


Дифференциальная роль различных антигенпрезентирующих клеток в инициации иммунного ответа

 

 


Участие макрофагов в презентации антигенов Т-лимфоцитам

 


Участие дендритных клеток в презентации антигенов Т-лимфоцитам

 

       
   
 
 

 


Участие В-лимфоцитов в презентации антигена Т-лимфоцитам

 

 


Участие В-лимфоцитов в преобразовании антигенов в иммунногенную для Т-лимфоцитов форму

 


ХАРАКТЕРИСТИКА ЭФФЕКТОРНЫХ ФОРМ Т-ЛИМФОЦИТОВ

 
 

 

           
 
Т-киллеры (цитотоксические Т-лимфоциты, CD8 Т-клетки)
 
CD4 Т-хелперные клетки (ТН2-клетки)
   
CD4 Т-клетки воспаления (ТН1-клетки)
 

 

 


Характеристика Т-киллеров

 

 


Реализация цитолитического действия CD8 Т-клеток

 

 

 

 

 


Механизм индукции апоптоза клеток-мишеней Т-киллерами

 

 


Характеристика CD4 Т-клеток

       
   
CD4 Т-клетки
 
 

 

 


Предполагаемые механизмы, направляющие дифференцировку CD4 ТH0-клеток в направлении Т-клеток воспаления или Т-хелперов

 


Механизмы эффекторного действия Т-клеток воспаления

             

Гуморальные факторы, продуцируемые Т-клетками воспаления

   
 
 
 
 
 
 
 


Механизмы эффекторного действия Т-хелперов

 


Формы клеточного иммунного ответа

                …  

Характеристика В-системы иммунитета

                                  Формы участия АНТИТЕЛ в…

Свойства гуморального специфического иммунитета

 

 


Доантигенный этап дифференцировки В-лимфоцитов

 


Факторы, индуцирующие первичный В-лимфоцитопоэз

 


СПОСОБЫ ВЛИЯНИЯ стромального микроокружения красного костного мозга на ПЕРВИЧНЫЙ В-лимфоцитопоэз

 

 


Морфо-функциональные особенности предшественников В-лимфоцитов

На разных стадиях созревания

                            …

Основные причины формирования наивных В-лимфоцитов строго определенной специфичности

 


Сущность заключительного этапа первичного В-лимфоцитопоэза

 

       
 
 
   

 

 


Особенности популяции рециркулирующих В-лимфоцитов, имеющих на поверхности белок CD5

 

 


Механизм активации наивных В-лимфоцитов и превращения их в зрелые антителопродуцирующие клетки

 

 


Особенности строения тимуснезависимых антигенов

 

Тимуснезависимые антигены отличаются от остальных наличием в своем составе:

 

ü либо специального митогенного участка, заменяющего сигнал от Т-хелперов,

 

ü либо многократно повторяющихся одинаковой специфичности эпитопов, способных в результате многократного связывания с антигенраспознающими рецепторами наивного В-лимфоцита (многоточечного взаимодействия антигена с антигенраспознающими рецепторами наивного В-лимфоцита соответствующей специфичности) самостоятельно индуцировать его антигензависимый лимфоцитопоэз.

 

 

Механизм активации В-лимфоцитов тимуснезависимыми антигенами

 

     
 
 
 

 

 


Роль Т-хелперов в активации В-лимфоцитов тимусзависимыми антигенами

 

 


Последовательность процессов при сцепленном распознавании

В- и Т-лимфоцитами антигена (разных его эпитопов: "своих" для В-лимфоцита и отличных от них, других, для Т-лимфоцита)

 


Мембранные и гуморальные активаторы для В-клеток, продуцируемые

Т-хелперамии их роль в созревании В-клетоки переключении синтеза иммуноглобулинов с одного изотипа на другой

         
 
 
   
 
   

 


Роль Т-клеток воспаления в реализации гуморального иммунного ответа

 


Роль Т-хелперов в реализации гуморального иммунного ответа

 


Механизм повышения аффинности антител в процессе формирования иммунного ответа

 

 
 

 


Образование активных антителопродуцирующих клеток

 


Характер изменений в лимфоидных фолликулах под влиянием проникающих антигенов

 

– Конец работы –

Используемые теги: определение, иммунологии, основные, понятия0.066

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение иммунологии, основные ее понятия

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. ЭЛЕМЕНТЫ ЯЗЫКА. ЭЛЕМЕНТЫ ДАННЫХ. ВЫРАЖЕНИЯ. ОСНОВНЫЕ ИНСТРУКЦИИ. ПРОЦЕДУРЫ. ПРЕПРОЦЕССОР. СТИЛЬ ПРОГРАММИРОВАHИЯ
ВВЕДЕНИЕ... ОСНОВНЫЕ ПОНЯТИЯ И...

Введение. Основные понятия и определения
Введение Основные понятия и определения... Основные критерии работоспособности и расч та деталей машин...

В пособии приведены основные понятия, определения и термины безопасности
Киселев В В... Безопасность жизнедеятельности...

Родовидовые определения. Правила определения понятий
Родовидовым назовем определение через род и видовое отличие. Родовидовое определение имеет следующую структ уру: А= dfВ и С, где А — определяемое… Например, для понятия стула — «предмет мебели», для понятия преступления —… Правила определения 1. Правило соразмерности. Прежде, чем описать, в чем заключается это правило, продолжим нашу…

ОСНОВНЫЕ ПОНЯТИЯ О РЫНКЕ НЕДВИЖИМОСТИ. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Анализсостояния корпоративной деятельности ассоциации подготовка кадров подготовка и лоббирование нормативных актов взаимодействие с банками... Анализобъема и структуры предложения спроса соотношения спрос предложение... Анализобъема и структуры сделок отношения сделки спрос сделки предложение сделки фонд...

Основные понятия и определения
В настоящее время искусственный интеллект одна из быстро развивающихся областей науки которая разрабатывает методы и средства поиска решений... Идея создания искусственного подобия человеческого разума для решения сложных... В XVIII в Г Лейбниц и Р Декарт независимо друг от друга развили эту идею предложив...

Основные понятия и определения
Основные понятия и определения... Теория механизмов и машин занимается исследованием и разработкой... Механизм совокупность подвижных материальных тел одно из которых закреплено а все остальные совершают вполне...

Лекция. Работа в Microsoft Excel 2010 Лекция посвящена основам вычислений с использованием формул в Microsoft Excel 2010. 1. Даны определения основных понятий, рассмотрена структура формулы
Операторы сравнения... Операторы сравнения используются для сравнения двух значений Результатом... Текстовый оператор конкатенации...

Основные понятия, определения, законы электрических цепей
Электрической цепью называют совокупность устройств предназначенных для прохождения электрического тока электромагнитные процессы в которых... По типу оператора ЭЦ делятся на линейные когда их реакция на внешнее... Активные линейные элементы источники электрической энергии...

Трансплантация органов и тканей. Определение понятия пластической хирургии. Современная терминология в трансплантологии. Основные виды пересадки кожи. Причины отторжения трансплантантов. Профилактика осложнений. Реплантация. Имплантация
Трансплантация органов и тканей-относительно новый раздел хирургии, который заключается в изъятие жизнеспособного органа или тканей у одной особи… Протезирование органов и тканей-используются синтетические материалы, металлы… Жизненно важные органы те, без которых сохранение жизни практически невозможно. Примером таких органов могут служить…

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам