рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дифференциальное исчисление функции

Дифференциальное исчисление функции - раздел Философия,       К У Р С...

 

 

 

К У Р С

В Ы С Ш Е Й

М А Т Е М А Т И К И

 

ЧАСТЬ 2

 

 

 

Дифференциальное исчисление функции

Производная функции, ее геометрический и физический смысл. Определение. Производной функции f(x) в точке х = х0 называется предел…  

Тейлор (1685-1731) – английский математик

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все… 2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Функция f(x) = ex.

 

Находим: f(x) = ex, f(0) = 1

f¢(x) = ex, f¢(0) = 1

……………………

f(n)(x) = ex, f(n)(0) = 1

 

Тогда:

 

 

Пример: Найдем значение числа е.

В полученной выше формуле положим х = 1.

 

 

Для 8 членов разложения: e = 2,71827876984127003

Для 10 членов разложения: e = 2,71828180114638451

Для 100 членов разложения: e = 2,71828182845904553

 

 

 

На графике показаны значения числа е с точностью в зависимости от числа членов разложения в ряд Тейлора.

Как видно, для достижения точности, достаточной для решения большинства практических задач, можно ограничиться 6-7 – ю членами ряда.

 

 

Функция f(x) = sinx.

Получаем f(x) = sinx; f(0) = 0

f¢(x) = cosx = sin( x + p/2); f¢(0) = 1;

f¢¢(x) = -sinx = sin(x + 2p/2); f¢¢(0) = 0;

f¢¢¢(x) = -cosx = sin(x + 3p/2); f¢¢¢(0)=-1;

…………………………………………

f(n)(x) = sin(x + pn/2); f(n)(0) = sin(pn/2);

f(n+1)(x) = sin(x + (n + 1)p/2); f(n+1)(e) = sin(e + (n + 1)p/2);

 

Итого:

 

Функция f(x) = cosx.

 

Для функции cosx, применив аналогичные преобразования, получим:

 

 

 

 

Функция f(x) = (1 + x)a.

(a - действительное число)

 

 

 

…………………………………………………..

 

 

Тогда:

 

 

 

Если в полученной формуле принять a = n, где n- натуральное число и f(n+1)(x)=0, то Rn+1 = 0, тогда

 

 

 

Получилась формула, известная как бином Ньютона.

 

Пример: Применить полученную формулу для нахождения синуса любого угла с любой степенью точности.

На приведенных ниже графиках представлено сравнение точного значения функции и значения разложения в ряд Тейлора при различном количестве членов разложения.

 

 

 

Рис. 1. Два члена разложения

 

 

 

 

Рис. 2. Четыре члена разложения

 

 

 

 

 

Рис. 3. Шесть членов разложения

 

 

 

 

Рис. 4. Десять членов разложения

Чтобы получить наиболее точное значение функции при наименьшем количестве членов разложения надо в формуле Тейлора в качестве параметра а выбрать такое число, которое достаточно близко к значению х, и значение функции от этого числа легко вычисляется.

 

Для примера вычислим значение sin200.

Предварительно переведем угол 200 в радианы: 200 = p/9.

Применим разложение в ряд Тейлора, ограничившись тремя первыми членами разложения:

 

В четырехзначных таблицах Брадиса для синуса этого угла указано значение 0,3420.

 

 

На графике показано изменение значений разложения в ряд Тейлора в зависимости от количества членов разложения. Как видно, если ограничиться тремя членами разложения, то достигается точность до 0,0002.

Выше говорилось, что при х®0 функция sinx является бесконечно малой и может при вычислении быть заменена на эквивалентную ей бесконечно малую функцию х. Теперь видно, что при х, близких к нулю, можно практически без потери в точности ограничиться первым членом разложения, т.е. sinx @ x.

 

Пример: Вычислить sin28013¢15¢¢.

 

Для того, чтобы представить заданный угол в радианах, воспользуемся соотношениями:

 

10 = ; 280 ;

1¢ ; ;

; ;

 

рад

 

Если при разложении по формуле Тейлора ограничиться тремя первыми членами, получим: sinx = .

Сравнивая полученный результат с точным значением синуса этого угла,

 

sin = 0,472869017612759812,

видим, что даже при ограничении всего тремя членами разложения, точность составила 0,000002, что более чем достаточно для большинства практических технических задач.

 

 

Функция f(x) = ln(1 + x).

Получаем: f(x) = ln(1 + x); f(0) = 0;

f¢(x) = ;

 

 

………………………………………

 

 

Итого:

 

 

 

 

Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.

 

ln1,5 = 0,405465108108164381

 

 

 

Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

Ниже будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений и к вычислению интегралов.

Применение дифференциала к приближенным вычислениям.

Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх.

Также можно воспользоваться формулой

 

 

Тогда абсолютная погрешность

 

Относительная погрешность

 

 

Более подробно применение дифференциала к приближенным вычислениям будет описано ниже.

 

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая производит разложение любой функции в ряды Тейлора и Маклорена, а также вычисляет значение функции в заданной точке, выводит погрешность вычислений.


Для запуска программы дважды щелкните на значке

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

 

Теоремы о среднем.

Теорема Ролля.

(Ролль (1652-1719)- французский математик)

 

Если функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (а, b) и значения функции на концах отрезка равны f(a) = f(b), то на интервале (а, b) существует точка e, a < e < b, в которой производная функция f(x) равная нулю,

f¢(e) = 0.

Геометрический смысл теоремы Ролля состоит в том, что при выполнении условий теоремы на интервале (a, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна оси Ох. Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.

 

Доказательство. По свойству функций, непрерывных на отрезке функция f(x) на отрезке [a, b] принимает наибольшее и наименьшее значения. Обозначим эти значения М и m соответственно. Возможны два различных случая М = m и M ¹ m.

 

Пусть M = m. Тогда функция f(x) на отрезке [a, b] сохраняет постоянное значение и в любой точке интервала ее производная равна нулю. В этом случае за e можно принять любую точку интервала.

 

Пусть М = m. Так значения на концах отрезка равны, то хотя бы одно из значений М или m функция принимает внутри отрезка [a, b]. Обозначим e, a < e < b точку, в которой f(e) = M. Так как М- наибольшее значение функции, то для любого Dх ( будем считать, что точка e + Dх находится внутри рассматриваемого интервала) верно неравенство:

Df(e) = f(e + Dx) – f(e) £ 0

 

При этом

Но так как по условию производная в точке e существует, то существует и предел .

Т.к. и , то можно сделать вывод:

 

 

 

Теорема доказана.

 

Теорема Ролля имеет несколько следствий:

 

1) Если функция f(x) на отрезке [a, b] удовлетворяет теореме Ролля, причем f(a) = f(b) = = 0, то существует по крайней мере одна точка e, a < e < b, такая, что f¢(e) = 0. Т.е. между двумя нулями функции найдется хотя бы одна точка, в которой производная функции равна нулю.

 

2) Если на рассматриваемом интервале (а, b) функция f(x) имеет производную (n-1)- го порядка и n раз обращается в нуль, то существует по крайней мере одна точка интервала, в котором производная (n – 1) – го порядка равна нулю.

 

 

Теорема Лагранжа.

(Жозеф Луи Лагранж (1736-1813) французский математик)

 

Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка e

a < e < b, такая, что .

 

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.

 

Рассмотренная выше теорема Ролля является частным случаем теоремы Лагранжа.

Отношение равно угловому коэффициенту секущей АВ.

у

 

В

 

 

А

 

0 а e b x

Если функция f(x) удовлетворяет условиям теоремы, то на интервале (а, b) существует точка e такая, что в соответствующей точке кривой y = f(x) касательная параллельна секущей, соединяющей точки А и В. Таких точек может быть и несколько, но одна существует точно.

 

 

Доказательство. Рассмотрим некоторую вспомогательную функцию

F(x) = f(x) – yсек АВ

Уравнение секущей АВ можно записать в виде:

 

Функция F(x) удовлетворяет теореме Ролля. Действительно, она непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b). По теореме Ролля существует хотя бы одна точка e, a < e < b, такая что F¢(e) = 0.

 

Т.к. , то , следовательно

 

 

Теорема доказана.

 

Определение. Выражение называется формулой

Лагранжаили формулой конечных приращений.

Иногда формулу Лагранжа записывают в несколько другом виде: , где 0 < q < 1, Dx = b – a, Dy = f(b) – f(a).

Определение. Точки максимума и минимума функции называются точками экстремума.

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то…   Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Определение: Вектор называется вектором кривизны. Величина называется радиусом кривизны.

 

О формулах Френе.

 

Формулами Френе называются соотношения:

 

 

Последняя формула получена из двух первых.

В этих формулах:

- единичный вектор главной нормали к кривой,

- единичный вектор бинормали,

R – радиус кривизны кривой ,

Т – радиус кручения кривой.

 

Определение: Плоскость, проходящая через касательную и главную нормаль к кривой в точке А называется соприкасающейся плоскостью.

Определение: Нормаль к кривой, перпендикулярная к соприкасающейся плоскости, называется бинормалью.Ее единичный вектор- .   Величина называется кручением кривой.

Способ. Тригонометрическая подстановка.

  Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.

Способ. Метод неопределенных коэффициентов.

Рассмотрим интегралы следующих трех типов:   где P(x) – многочлен, n – натуральное число.

Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

z = f(x, y)

 

Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной, а если более одного, то – многозначной.

 

Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

 

Определение: Окрестностью точкиМ00, у0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

 

Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М00, у0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

 

также верно и условие .

Записывают:

 

Определение: Пусть точка М00, у0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М00, у0), если

(1)

причем точка М(х, у) стремится к точке М00, у0) произвольным образом.

 

Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрывафункции f(x, y). Это может быть в следующих случаях:

1) Функция z = f(x, y) не определена в точке М00, у0).

2) Не существует предел .

3) Этот предел существует, но он не равен f( x0, y0).

 

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и

ограниченной области D, то в этой области найдется по крайней мере одна точка

N(x0, y0, …), такая, что для остальных точек верно неравенство

f(x0, y0, …) ³ f(x, y, …)

а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство

f(x01, y01, …) £ f(x, y, …)

тогда f(x0, y0, …) = M – наибольшее значение функции, а f(x01, y01, …) = m – наименьшее значениефункции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

 

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î [m, M] существует точка

N0(x0, y0, …) такая, что f(x0, y0, …) = m.

 

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

 

Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .

 

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

 

 

Приведенные выше свойства аналогичны свойствам функций одной переменной, непрерывных на отрезке. См. Свойства функций, непрерывных на отрезке.

 

 

Производные и дифференциалы функций

нескольких переменных.

 

Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

 

Можно записать

.

 

 

Тогда называется частной производнойфункции z = f(x, y) по х.

Обозначение:

 

Аналогично определяется частная производная функции по у.

 

 

Геометрическим смысломчастной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

 

 

Полное приращение и полный дифференциал.

Определение. Для функции f(x, y) выражение Dz = f( x + Dx, y + Dy) – f(x, y) называется полным приращением.

 

Если функция f(x, y) имеет непрерывные частные производные, то

 

Применим теорему Лагранжа (см. Теорема Лагранжа.) к выражениям, стоящим в квадратных скобках.

 

 

 

здесь

 

Тогда получаем

 

 

Т.к. частные производные непрерывны, то можно записать равенства:

 

 

 

Определение. Выражение называется полным приращениемфункции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

Определение: Полным дифференциаломфункции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

 

 

Для функции произвольного числа переменных:

 

 

Пример. Найти полный дифференциал функции .

 

 

 

 

 

 

 

Пример. Найти полный дифференциал функции

 

 

 

 

 

 

Геометрический смысл полного дифференциала.

Касательная плоскость и нормаль к поверхности.

 

 

нормаль

 

N

j N0

 

касательная плоскость

 

 

Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.

 

Определение. Нормальюк поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

 

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

 

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М00, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.

 

Уравнение нормали к поверхности в этой точке:

 

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

 

Пример. Найти уравнения касательной плоскости и нормали к поверхности

 

в точке М(1, 1, 1).

 

 

 

 

Уравнение касательной плоскости:

 

 

Уравнение нормали:

 

 

 

Приближенные вычисления с помощью полного дифференциала.

 

Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:

 

 

Если подставить в эту формулу выражение

 

то получим приближенную формулу:

 

 

Пример. Вычислить приближенно значение , исходя из значения функции при x = 1, y = 2, z = 1.

 

Из заданного выражения определим Dx = 1,04 – 1 = 0,04, Dy = 1,99 – 2 = -0,01,

Dz = 1,02 – 1 = 0,02.

Найдем значение функции u(x, y, z) =

Находим частные производные:

 

 

 

Полный дифференциал функции u равен:

 

 

 

 

 

Точное значение этого выражения: 1,049275225687319176.

 

При использовании компьютерной версии “Курса высшей математики” возможно запустить программу, которая решает рассмотренный выше пример для произвольной функции трех переменных.


Для запуска программы дважды щелкните на значке

 

Примечание: Для запуска программы необходимо чтобы на компьютере была установлена программа Maple (Ó Waterloo Maple Inc.) любой версии, начиная с MapleV Release 4.

 

Частные производные высших порядков.

 

Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

 

 

 

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

 

Определение. Частные производные вида и т.д. называются смешанными производными.

Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение: . Т.е. частные производные высших порядков не зависят от порядка дифференцирования.

– Конец работы –

Используемые теги: ДИФФЕРЕНЦИАЛЬНОЕ, исчисление, Функции0.06

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дифференциальное исчисление функции

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Образовательная функция. Воспитательная функция. Развивающая функция
Обучение одна из основных категорий дидактики и компонент педагогического процесса... Обучение это целенаправленный и организованный процесс взаимодействия... Функции обучения образовательная воспитательная развивающая...

Дифференциальное и интегральное Исчисление в случае функции одной Переменной
Санкт Петербургский государственный... архитектурно строительный университет Факультет городского строительства и жилищно коммунального хозяйства...

Контрольная работа по математике №1 «ВВЕДЕНИЕ В АНАЛИЗ И ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО»
Горизонтальных асимптот график функции не имеет, так как x x lim x и lim x x 2x - 1 x- 2x - 1 Определим, существуют ли наклонные асимптоты x x f x… Данная функция определена для x1, e. Находим производную x f x x ln x 2xlnx… В точках x -2, x -1,2 и x 0 производная f x 0, но в окрестностях точек x -2 и x -1,2 она меняет знак, поэтому в этих…

Раздел 2. Дифференциальное исчисление. Дифференциальные уравнения. Ряды
Тема Интегралы... Лекция Первообразная и неопредел нный интеграл...

РАЗДЕЛ 1. Дифференциальное исчисление
Лекции и Предел функции Понятие предела функции Пусть функция... Свойства бесконечно больших величин... Произведение бесконечно большой величины на функцию имеющую ненулевой предел бесконечно большая величина...

Экономическое содержание и механизм функционирования ссудного процента Экономическое содержание и механизм функционирования ссудного процента
С развитием в нашей стране рыночных отношений, появлением предприятий различных форм собственности (как частной, так и государственной,… У предприятий всех форм собственности все чаще возникает потребность… Ссудный процент возникает там, где отдельный собственник передает другому определенную стоимость во временное…

Предел функции в точке и при Односторонние пределы. Действия над пределами. Бесконечно малые функции, таблица эквивалентных бесконечно малых и ее применение при вычислении пределов функций
Лекция Предел функции в точке и при Односторонние пределы Действия над пределами Бесконечно малые функции таблица эквивалентных бесконечно... Обозначения...

Определение. Производной функции у = fx в точке х называется предел отношения приращения функции к приращению аргумента, если он существует
Определение Производной функции у f x в точке х называется предел отношения приращения функции к приращению аргумента если он существует... Используется также эквивалентное обозначение и употребляется точка сверху...

Гинекология. ЖАЛОБЫ: на бели, боли, кровотечение, нарушение функции смежных органов, нарушения половой функции, зуд наружных половых органов
Любая гинекологическая патология имеет очень сходную симптоматику поэтому независимо от того с какой патологией придет женщина жалобы у нее... ЖАЛОБЫ на бели боли кровотечение нарушение функции смежных органов... Есть много и других жалоб но эти жалобы являются основными...

Непрерывность функции. Точки разрыва. Асимптоты графика функции
Правила дифференцирования... Таблица производных основных функций...

0.036
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам