рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тейлор (1685-1731) – английский математик

Тейлор (1685-1731) – английский математик - раздел Философия, Дифференциальное исчисление функции   Теорема Тейлора. 1) Пусть Функция ...

 

Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до порядка n функции и их производные непрерывны и дифференцируемы в этой окрестности}.

2) Пусть х- любое значение из этой окрестности, но х ¹ а.

Тогда между точками х и а найдется такая точка e, что справедлива формула:

 

 

- это выражение называется формулой Тейлора, а выражение:

 

 

 

называется остаточным членом в форме Лагранжа.

 

Доказательство. Представим функцию f(x) в виде некоторого многочлена Pn(x), значение которого в точке х = а равно значению функции f(x), а значения его производных равно значениям соответствующих производных функции в точке х = а.

 

(1)

 

Многочлен Pn(x) будет близок к функции f(x). Чем больше значение n, тем ближе значения многочлена к значениям функции, тем точнее он повторяет функцию.

Представим этот многочлен с неопределенными пока коэффициентами:

 

(2)

Для нахождения неопределенных коэффициентов вычисляем производные многочлена в точке х = а и составляем систему уравнений:

 

(3)

 

Решение этой системы при х = а не вызывает затруднений, получаем:

 

 

 

 

…………………….

 

Подставляя полученные значения Ci в формулу (2), получаем:

 

 

 

Как было замечено выше, многочлен не точно совпадает с функцией f(x), т.е. отличается от нее на некоторую величину. Обозначим эту величину Rn+1(x). Тогда:

 

f(x) = Pn(x) + Rn+1(x)

 

Теорема доказана.

 

Рассмотрим подробнее величину Rn+1(x).

 

y Как видно на рисунке, в

точке х = а значение мно-

f(x) Rn+1(x) гочлена в точности совпа-

дает со значением функции.

Pn(x) Однако, при удалении от точ-

ки х = а расхождение значе- ний увеличивается.

0 a x x

 

Иногда используется другая запись для Rn+1(x). Т.к. точка eÎ(a, x), то найдется такое число q из интервала 0 < q < 1, что e = a + q(x – a).

Тогда можно записать:

 

Тогда, если принять a = x0, x – a = Dx, x = x0 + Dx, формулу Тейлора можно записать в виде:

 

 

где 0 < q < 1

 

Если принять n =0, получим: f(x0 + Dx) – f(x0) = f¢(x0 + qDx)×Dx – это выражение называется формулой Лагранжа. (Жозеф Луи Лагранж (1736-1813) французский математик и механик).

Формула Тейлора имеет огромное значение для различных математических преобразований. С ее помощью можно находить значения различных функций, интегрировать, решать дифференциальные уравнения и т.д.

При рассмотрении степенных рядов будет более подробно описаны некоторые особенности и условия разложения функции по формуле Тейлора.

 

Формула Маклорена.

 

Колин Маклорен (1698-1746) шотландский математик.

 

Формулой Маклоренаназывается формула Тейлора при а = 0:

 

 

 

 

Мы получили так называемую формулу Маклорена с остаточным членом в форме Лагранжа.

Следует отметить, что при разложении функции в ряд применение формулы Маклорена предпочтительнее, чем применение непосредственно формулы Тейлора, т.к. вычисление значений производных в нуле проще, чем в какой- либо другой точке, естественно, при условии, что эти производные существуют.

 

Однако, выбор числа а очень важен для практического использования. Дело в том, что при вычислении значения функции в точке, расположенной относительно близко к точке а, значение, полученное по формуле Тейлора, даже при ограничении тремя – четырьмя первыми слагаемыми, совпадает с точным значением функции практически абсолютно. При удалении же рассматриваемой точки от точки а для получения точного значения надо брать все большее количество слагаемых формулы Тейлора, что неудобно.

Т.е. чем больше по модулю значение разности (х – а) тем более точное значение функции отличается от найденного по формуле Тейлора.

Кроме того, можно показать, что остаточный член Rn+1(x) является бесконечно малой функцией при х®а, причем долее высокого порядка, чем (х – а)m, т.е.

 

.

Таким образом, ряд Маклорена можно считать частным случаем ряда Тейлора.

 

 

Представление некоторых элементарных функций

по формуле Тейлора.

Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу. Нахождение значений тригонометрических, обратных тригонометрических, логарифмических функций также может быть сведено к нахождению значений соответствующих многочленов.

Если при разложении в ряд взять достаточное количество слагаемых, то значение функции может быть найдено с любой наперед заданной точностью. Практически можно сказать, что для нахождения значения любой функции с разумной степенью точности (предполагается, что точность, превышающая 10 – 20 знаков после десятичной точки, необходима очень редко) достаточно 4-10 членов разложения в ряд.

Применение принципа разложения в ряд позволяет производить вычисления на ЭВМ в режиме реального времени, что немаловажно при решении конкретных технических задач.

 

 

– Конец работы –

Эта тема принадлежит разделу:

Дифференциальное исчисление функции

К У Р С В Ы С Ш Е Й М А Т Е М А Т И К И...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тейлор (1685-1731) – английский математик

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Дифференциальное исчисление функции
одной переменной. Производная функции, ее геометрический и физический смысл. Определение. Производной функции f(x) в точке х = х0

Лагранжаили формулой конечных приращений.
В дальнейшем эта формула будет очень часто применяться для доказательства самых разных теорем. Иногда формулу Лагранжа записывают в несколько другом виде: , где 0 < q

Определение. Точки максимума и минимума функции называются точками экстремума.
  Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой

Определение: Плоскость, проходящая через касательную и главную нормаль к кривой в точке А называется соприкасающейся плоскостью.
  Определение: Нормаль к кривой, перпендикулярная к соприкасающейся плоскости, называется бинормалью.Ее единичный вектор- .  

Способ. Тригонометрическая подстановка.
    Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.  

Способ. Метод неопределенных коэффициентов.
  Рассмотрим интегралы следующих трех типов:   где P(x) – многочлен, n – натуральное число.   Причем интегралы II и III типов могут быть

Определение. Частные производные вида и т.д. называются смешанными производными.
  Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение: . Т.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги