рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

VI.НЕЙРОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ И ПАМЯТИ.

VI.НЕЙРОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ И ПАМЯТИ. - раздел Философия, ЛЕКЦИЯ № 28 Тема: Биохимия нервной ткани   После Открытия Способа Кодирования Генетической Инфор...

 

После открытия способа кодирования генетической информации в ДНК (генетической памяти) и успешного изучения иммунологической памяти были предприняты попытки отыскать молекулярные основы нейронной памяти - возможного нервного субстрата энграммы [15].

Как показали эксперименты, существуют кратковременная память с относительно слабой способностью к накоплению и долговременная память,причем накопленная информация может переходить из кратковременной формы запоминания в более длительную. Считается, что кратковременная форма памяти представлена реверберирующими контурами, возникающими в коре больших полушарий и быстро исчезающими. Долговременная память сохраняется в течение столь длительного времени, что ее можно связывать с появлением каких-то устойчивых изменений в химизме нейронов или даже в физических связях [7].

Вначале интенсивно исследовался вопрос, не приводит ли научение к изменениям состава рибонуклеиновых кислот (РНК) в нервных и глиальных клетках. Действительно были обнаружены изменения в последовательностях нуклеотидов, однако они оказались в значительно степени неспецифичными последствиями общей активности животного и экспериментального стресса. Что же касается опытов с каннибализмом, в которых «необученным» животным скармливались «обученные» (или ЦНС последних), воспроизводимости их результатов не удалось добиться ни у рыб, ни у млекопитающих [7].

В настоящее время из множества гипотез возникновения памяти наиболее распространенные две [15]:

· Синапсо-мембранная теория памяти.

Память представляет собой комбинацию явлений облегчения и торможения нервной передачи в специфических синапсах.

Циклические нуклеотиды, высвобождающиеся в клетках под влиянием возбуждения соответствующих рецепторов, регулируют активность множества внутриклеточных ферментов, что ведет к изменению не только свойств синаптических мембран, но и транскрипции генов и многих других процессов. Таким образом, прохождение импульса через синапс должно оказывать продолжительное влияние на свойства этого синапса.

· Химическая основа памяти – молекулярный код.

Другая гипотеза рассматривает в качестве химической основы обучения молекулярный код. Действительно, из мозга крыс, приученных избегать темноты, был выделен пептид, состоящий из 15 аминокислотных остатков, связанный с указанным поведенческим навыком: при введении пептида в мозг необученных крыс они также начинали избегать темноты. Этот и многие другие примеры позволили предположить о существовании в мозге специфических переносчиков приобретенных навыков поведения.

Хотя данную гипотезу трудно принять, все же, существование пептидных гормонов и либеринов, синтезируемых в нейронах заставляет внимательно отнестись к предположению о связи долговременной памяти с синтезом специфических аминокислотных последовательностей в определенных нейронах.

 

7.1. Ноотропные препараты

Получение новых сведений о природе нарушений памяти, вовлекающих нейробиохимические изменения на различных уровнях — нейрональном, синаптическом, мембранном, кле­точном, молекулярном, позволило подойти к поиску средств коррекции этих нару­шений, в результате чего получен целый ряд веществ, которые обладают значительной ноотропной активностью и оригинальными механизмами действия.

Ноотропные препараты (НП)составляют особую группу нейропсихотропных препаратов, специфический эффект которых определяется способностью улучшать процессы обучения и памяти, когнитивные функции как у здоровых лиц, так и, в особенности, нарушенные при различных заболеваниях. В зарубежной литературе, как синоним НП, иногда используется термин «усилитель когнитивных функций».

Общая схема действия НП прежде всего связана с изменением метаболиче­ских, биоэнергетических процессов в нервной клетке, повышением скорости оборота информационных мак­ромолекул и активацией синтеза белка, что отражено во многих последних обзорах.

Так, рацетамы вызывают усиление синтеза фосфолипидов и белка, необходимых для процессов памяти, активируют аденилаткиназу, катализирующую превращение АДФ в АТФ, усиливают утилизацию глюкозы в мозге, умень­шает активность Nа/К.-АТФ-азы, усиливают актив­ность синаптосомальной фосфолипазы А, угнетают кортикальный выброс L-пролина, амнестической ами­нокислоты, повышают интенсивность включения ме­ченого лецитина в белок и уредина в РНК, а также ин­корпорацию 32Р в фосфолипиды мозга [6].

Можно определить не­сколько перспективных направлений создания НП но­вого поколения [6].

I. В настоящее время ни у кого не вызывает сомне­ний, что глутаматергическая система играет важную, если не ведущую роль, в осуществлении высших интегративных функций мозга. Наряду с данными об участии NMDA рецепторного комплекса в базис­ных механизмах синаптической пластичности, процес­сах обучения и памяти накапливаются доказательства и о вовлечении этой системы в патогенез различных заболеваний, сопровождающихся нарушениями памя­ти. В частности, показано, что у больных, страдающих деменциями, в том числе и болезнью Альцгеймера, нарушается чувствительность и связы­вающая способность NMDA рецепторов в мозге, на­блюдается атрофия глугаматергических кортикальных нейронов и ослабление синаптической пластичности.

Для процессов памяти представляется важным специфический структурный участок NMDA рецептора — глици­новый сайт, активация которого лежит в основе дли­тельной потенциации нейронов гиппокампа, а, следо­вательно и усиления синаптической передачи. Такие агонисты глицинового сайта как глицин и Д-циклосерин оказывают улучшающее влияние на память как в эксперименте, так и у человека.

I.Процессы памяти тесно связаны с холинергической системой и дефицит холинергической передачи занимает одну из ключевых позиций в нейропатологии сенильной деменции, в том числе болезни Альцгеймера. Для лечения этих заболе­ваний широко используются препараты с холинергическим механизмом действия, которые воздействуют на три уровня (усиление синтеза ацетилхолина, воз­действие на рецепторы и ингибирование ацетилхолинэстеразы).

В последние годы внимание исследователей при­влекает фактор роста нервов (ФРН), нейропептид, со­держащий 118 аминокислот, рецепторы которого нахо­дятся на холинергических терминалях в коре и гиппокампе, и на холинергических нейронах сомы. Имеются данные о том, что интрацеребральное введе­ние ФРН предотвращает гибель холинергических ней­ронов, а также восстанавливает нарушение простран­ственной памяти у крыс с травмой переднего мозга. Введение ФРН в мозг больных болезнью Альцгеймера увеличивает связывание никотина в коре мозга и уси­ливает церебральный кровоток, что свидетельствует о способности ФРН противодействовать холинергическим дефицитам при этом заболевании.

II.Согласно синапсо-мембранной гипотезе памя­ти, механизм ее формирования определяется структур­но-функциональными изменениями в мембране, кото­рые включают стабилизацию конформационных синаптических мембранных протеиновых макромоле­кул, в результате чего происходит активация синапти­ческой передачи. С другой стороны, вызываемые сво­бодными радикалами поражения в мембране играют важную роль в старении и в патогенезе различных заболеваний, в том числе деменции. На ос­новании этого, вещества, обладающие мембранопротекторным действием, способные противостоять дей­ствию свободных радикалов, рассматриваются как перспективные лечебные средства. К числу НП с антиоксидантным механизмом действия относятся: меклофеноксат, фосфотидилсерин — природный компонент фосфолипидной мембраны, которые доказали свою эффективность в клинических исследованиях с приме­нением двойного слепого контроля у больных с нару­шением памяти

III. Наиболее интенсивные ис­следования по поиску новых НП развернулись на ос­нове нейропептидов.Показано, что регуляторные нейропептиды, такие как АКТГ и его фрагменты, соматостатин, вазопрессин, тиролиберин, субстанция Р и др. вовлекаются в процессы обучения и памяти. В связи с этим делаются попытки создания синтетиче­ских аналогов этих пептидов, которые позволили бы избежать нежелательных эндокринных эффектов и сделать молекулу более устойчивой к разрушению при введении вещества внутрь.

IV. Одним из путей усиления пептидергической нейропередачи является ингибирование некоторых пептидаз мозга, в частно­сти, пролилэндопептидазы (ПЭП), которая играет су­щественную роль в метаболизме пролинсодержащих нейропептидов, таких как субстанция Р, аргинин, вазо­прессин и тиролиберин. Все эти нейропептиды облада­ют способностью усиливать мнестические процессы и их уровни в мозге значительно уменьшены у больных с нарушением памяти.Показано также, что ПЭП участвует в генера­ции Р-амилоида в мозге пациентов с болезнью Альцгеймера и выявлен защитный эффект вещества Р в отношении нейрогенераторного эффекта Р-амилоида. В связи с этим предпринимаются попытки создания НП на основе ингибиторов ПЭП

Таким образом, представленные данные свидетель­ствуют о том, насколько интенсивно в последние годы проводятся исследования, связанные с поиском и изу­чением механизма действия, НП.

 

СОН. БИОХИМИЧЕСКИЕ ТЕОРИИ СНА

Обмен веществ в головном мозге в состоянии бодрствования и сна различаются.

Определяется повышение концентрации молочной кислоты, что свидетельствует об активации анаэробных процессов и снижении интенсивности цТК. Помимо глюкозы, в качестве субстрата начинают использоваться кетоновые тела крови [19].

Потребление кислорода мозговой тканью зависит от стадии сна. В фазу медленного сна она понижена на 30% от дневной нормы, а в БДГ-фазу -возрастает на 12%. Падает интенсивность процессов ПОЛ. Снижается уровень аммиака в ткани. Наблюдается активация синтетических процессов обмена нуклеиновых кислот, белков и полипептидов [19].

Переход от бодрствования ко сну предполагает два возможных пути [15]:

· Прежде всего, не исключено, что механизмы, поддерживающие бодрствующее состояние, постепенно «утомляются». В соответствии с такой точкой зрения, сон – это пассивное явление, следствие снижения уровня бодрствования.

· Сон- это активное торможение обеспечивающих бодрствование механизмов. В этом случае нервные процессы, вызывающие сон, развиваются еще в бодрствующем состоянии, и в конечном итоге перекрывают бодрствование.

До последнего времени господствовала пассивная теория засыпания, однако окончательно вопрос не решен. С точки зрения нейрохимии интересны две теории механизма сна:

· Серотонинэргическая теория сна.

В верхних отделах ствола мозга есть две области – ядра шва и голубое пятно - у нейронов которых такие же обширные проекции, как и у нейронов ретикулярной формации, т.е. достигающие многих областей ЦНС. Медиатором в клетках ядер шва служит серотонин (5-НТ), а голубого пятна – норадренилин.

В конце 1960-х гг. на основании ряда фактов М. Жуве пришел к выводу, что две эти нейронные системы, особенно ядра шва, играют важнейшую роль в возникновении сна. Разрушение ядер шва у кошки приводит к полной бессоннице в течение нескольких дней; но за несколько следующих недель сон нормализуется. Частичная бессонница может быть также вызвана подавлением синтеза 5-НТ n-хлорфенилаланином. Ее можно устранить 5-гидрокситриптофаном, предшественником серотонина (последний не проникает через гематоэнцефалический барьер). Двустороннее разрушение голубого пятна приводит к полному исчезновению БДГ-фаз, не влияя на медленноволновой сон.

Все перечисленное позволило предположить, что выделение серотонина приводит к активному торможению структур, отвечающих за бодрствование, т.е. вызывает сон. При этом всегда возникает его медленноволновая фаза. Позднее наступает БДГ- сон, для которого необходимо голубое пятно (его активность обуславливает общее падение мышечного тонуса и быстрые движения глаз).

К сожалению, в своем первоначальном виде эта теория не верна. Сейчас доказано, что нейроны шва наиболее активны и выделяют максимум серотонина не во время сна, а при бодрствовании.

· В последние двадцать лет в связи с прогрессом нейрохимии, особенно в изучении нейропептидов, привлекла к себе внимание теория эндогенных факторах сна.

Известно, что бодрствовавший в течение длительного времени человек ощущает непреодолимую потребность во сне. Соответственно, пытались выяснить, не обусловлены ли усталость и сон, периодическим накоплением, истощением или выработкой особых циркулирующих в крови метаболитов (факторов сна); тогда во время сна за счет удаления или обменных процессов должны восстанавливаться их концентрации, характерные для бодрствования.

Были сделаны попытки обнаружить особые вещества либо после длительного лишения сна, либо у спящего человека. Первый из подходов основан на том, что фактор(ы) сна во время бодрствования накапливаются, а второй - на гипотезе, согласно которой они образуются или выделяются во сне.

Оба подхода дали определенные результаты. Так при проверке первой гипотезы из мочи и спинномозговой жидкости человека и животных был выделен небольшой глюкопептид – фактор S, вызывающий медленноволновой сон при введении другим животным. Существует, по-видимому, и фактор сна с БДГ. Второй подход привел к открытию индуцирующего глубокий сон нонапептида (в настоящее время он уже синтезирован), так называемого пептида дельта-сна (DSIP). Однако пока не известно, играют ли эти и многие другие «вещества сна», обнаруженные при проверке обоих гипотез, какую-либо роль в физиологической регуляции.

– Конец работы –

Эта тема принадлежит разделу:

ЛЕКЦИЯ № 28 Тема: Биохимия нервной ткани

Тема Биохимия нервной ткани... Нервная система определение понятия... Функции нервной системы Воспринимает информацию из внешней и внутренней среды...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: VI.НЕЙРОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЛАСТИЧНОСТИ И ПАМЯТИ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Аксоплазматический транспорт
Нейроплазма нейрона находится в постоянном движении. Это движение называемое аксональным транспортом, оно осуществляет связь между телом нейрона и нервным окончанием.

Глиальные клетки
Нейроглия (от греческого glia – клей) это клетки нервной системы, которые не проводят нервные импульсы. Глиальные клетки занимают 50% объема центральной нервной системы человек

Нейроспецифические белки
В цитоплазме нейронов присутствуют кальцийнейрин, белок 14-3-2, белок S-100, белок Р-400. · Белок S-100 (или кислый белок), содержит много г

Аминокислоты нервной ткани
Аминокислотный фонд мозга человека составляет в среднем 34ммоль на 1г ткани, что значительно превышает их содержание, как в плазме крови, так и в СМЖ. Высокая концентрация АК в нервной тка

Липиды нервной ткани
Нервная ткань отличается высоким содержанием и разнообразием липидов, которые придают ей специфические особенности. В сером веществе фосфоглицериды составляют более 60% от всех липидов, а

Белковый и липидный состав миелина, белого и серого вещества человека
Компонент Содержание % В миелине В белом веществе В сером веществе Белки

Миелиновое волокно
Миелиновое волокно состоит из одного аксона, который окутан миелиновой оболочкой и окружен глиальными клетками. Миелиновая оболо

Химический состав миелина
Миелин содержит много липидов, мало цитоплазмы и белков. Мембрана миелиновой оболочки в расчете на сухую массу содержит 70% липидов (что в целом составляет около 65% всех липидов мозга) и 30% белко

Энергетический обмен нервной ткани
Для мозга характерна высокая интенсивность энергетического обмена с преобладанием аэробных процессов. При массе 1400г (2% массы тела), он получает около 20% крови, выбрасываемой сердцем и приблизит

Обмен белков и аминокислот нервной ткани
Нервная ткань характеризуется высоким обменом аминокислот и белков. Скорость синтеза и распада белков в разных отделах головного мозга неодинакова. Белки серого вещества больших полушарий

Липидный обмен нервной ткани
Особенностью обмена липидов в мозге является то, что они не используются в качестве энергетического материала, а в основном идут на строительные нужды. Липидный обмен в целом невысокий и различаетс

Химический состав спинномозговой жидкости
Компоненты Содержание СМЖ Плазма крови Общий белок, г/л 0.15-0.40 65-85

Механизмы передачи нервного импульса по нервному волокну
В клеточной мембране располагаются Na+, K+ –АТФазы, натриевые и калиевые каналы. Na+, K+–АТФаза за счет

Нервный импульс
В отличие от потенциала покоя, потенциал действия охватывает лишь очень небольшой участок аксона (в миелинизированных волокнах – от одного перехвата Ранвье до соседнего). Возникнув в одном участке

Свойства химического синапса
Синапс проводит импульс только в одном направлении. Сигнал через синапс передается с задержкой (0,2-0,5мс). Через синапс нервная клетка может оказывать возбуждающее или тормозное действие. Работа с

Стадии химической синаптической передачи
1. Синтез медиатора 2. Загрузка нейромедиатора в везикулу. В случае, когда 1 и 2 стадии протекают в теле нервной клетки, происходит аксоплазматический транспорт везикулы к нервному окончан

Адренэргнические синапсы
Адренэргические синапсы используют в качестве медиаторов катехоламины – норадреналин (НА), дофамин. Адренэргические синапсы находятся в головном мозге и в СНС – в окончаниях

Болезнь Паркинсона
Болезнь Паркинсона – это прогрессирующее, часто фатальное нарушение центральной нервной системы, которое характеризуется ригидностью мышц, затруднениями движения и тремором. Бо

Холинэргические синапсы
Холинэргические синапсы - это группа различных синапсов использующих ацетилхолин в качестве нейромедиатора. Они играют важную роль в центральной нервной

Никотиновый холинэргический синапс
Синтез ацетилхолина: 1. Ацетил-СоА образуется в митохондриях из ПВК под действием пируватдегидрогеназы; 2. Холин образуется главным образом в печени из фосфатидилхо

Серотонинэргические синапсы
Серотонинэргические синапсы использую в качестве медиатора серотонин, они имеются в различных отделах головного мозга (мозговом стволе, варолиевом мосту, ядрах шва). Серотонин образуется и

Глутамат
Глутамат - основной возбуждающий медиатор ЦНС. Он представлен в высокой концентрации в нервной ткани (10 мМ) (причем в нейронах выше, чем в глии). Непосредственный источник глутама

Энкефалины и другие нейропептиды
Эндорфин, динорфин и энкефалины –нейромедиаторыпептидной природы, которые находятся в спинном мозге (области ответственной за проведение болевых сигналов), в малых промежуточны

Болевые рецепторы
Поверхностные ткани снабжены нервными окончаниями различных афферентных волокон. Наиболее толстые, миелинизированные Аβ-волокнаобладают тактильной чувствительностью. Они возбу

Привыкание к лекарствам и лекарственная зависимость.
Молекулярная модель. Применение опиатов в медицине ограничено из-за того, что их болеутоляющее действие со временем уменьшается, что делает необходимым постоянное у

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги