рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Термодинамические процессы в компресорах

Термодинамические процессы в компресорах - Лекция, раздел Философия, Термодинамическая система. Уравнение состояния. Компрессором Называют Машину Для Сжатия Газов. Различные Типы Компрессоров Ши...

Компрессором называют машину для сжатия газов. Различные типы компрессоров широко применяются в самых разнообразных областях техники. По конструкционным признакам компрессоры подразделяют на две группы — объемные (или, как их иногда называют, компрессоры статического сжатия) и лопаточные (или компрессоры динамического сжатия). В свою очередь объемные компрессоры делятся на два типа — поршневые и ротационные.

Принцип действия поршневого компрессора такой: в цилиндре движется поршень, совершающий возвратно-поступательное движение. При движении поршня слева направо происходит всасывание рабочего тела (при этом клапан открыт) при практически постоянном давлении (в частности, если в компрессоре сжимается атмосферный воздух, то в течение процесса всасывания давление воздуха в цилиндре несколько ниже атмосферного). После того как поршень дойдет до правого крайнего положения, процесс всасывания закончится, клапан закроется и поршень начнет двигаться в обратном направлении — справа налево. Давление газа в цилиндре повышается. Когда давление газа достигнет значения, несколько превышающего давление в резервуаре, куда подается газ, откроется клапан и сжатый газ поступит в этот резервуар. Дойдя до левого крайнего положения, поршень вновь начинает двигаться слева направо, и процесс повторится.

Поршню сообщается возвратно-поступательное движение через кри-вошипно-шатунный механизм от внешнего источника работы (электромотора, двигателя внутреннего сгорания и т. п.). В ротационном компрессоре роль поршня выполняет ротор показана схема одного из видов ротационных компрессоров—пластинчатого компрессора. В корпусе компрессора вращается ротор, расположенный эксцентрично относительно корпуса. В теле ротора имеются пазы, в них скользят пластинки, которые под действием сжимается, поскольку, как видно, объем этого газа уменьшается при вращении ротора за счет эксцентричности ротора относительно корпуса. Сжатый газ выбрасывается в выходной патрубок. Как видно из этой схемы, принцип действия ротационного компрессора аналогичен принципу действия поршневого компрессора — и в том и в другом случае сжатие газа осуществляется за счет уменьшения объема, в котором заключен газ.

Качественно иной принцип действия положен в основу лопаточных компрессоров, которые подразделяются на два типа — центробежные и осевые (или аксиальные). Принцип действия лопаточных компрессоров ясен из схемы центробежного компрессора, представленной. На валу укреплен диск, снабженный рабочими лопатками. Вал с диском вращается, и газ, всасываемый через входной патрубок и поступающий в зазор между лопатками, захватывается этими лопатками и приобретает высокую скорость — вращение диска сообщает газу большую кинетическую энергию. Далее этот газ, имеющий высокую скорость, поступает в диффузор S, лопатки которого укреплены в неподвижном корпусе компрессора. В диффузоре скорость газа уменьшается, и за счет торможения его кинетическая энергия превращается в потенциальную энергию давления. Газ высокого давления отводится через выходной патрубок.

В осевом компрессоре газ перемещается вдоль оси и сжимается в нескольких ступенях, состоящих из рабочих колес и направляющих аппаратов. Несмотря на большие конструкционные различия компрессоров разных типов, термодинамические принципы их действия аналогичны. Рассмотрим вначале процесс сжатия в поршневом компрессоре. Анализ этого процесса удобно проводить с помощью так называе-мой индикаторной диаграммы компрессора. Эта диаграмма показывает зависимость давления в цилиндре компрессора от переменного объема газа в цилиндре или, что то же самое, от хода поршня. Индикаторная диаграмма записывается специальным прибором— динамометрическим индикатором, присоединенным к компрессору.

В компрессоре обычно , , поэтому работа, затрачиваемая на сжатие 1кг газа (удельная работа сжатия) равна

. (5.20)

Минимальная работа требуется для изотермического сжатия газа:

(5.21)

Для политропного сжатия (при показателе политропы - ):

. (5.22)

В частности, для адиабатного сжатия ():

. (5.23)

Формулы (5.21) – (5.23) справедливы для идеального компрессора (без потерь). Мощность привода идеального компрессора определяется по формуле:

. (5.24)

 

– Конец работы –

Эта тема принадлежит разделу:

Термодинамическая система. Уравнение состояния.

Термодинамическая система Уравнение состояния... Параметры состояния... Лекция Первый закон термодинамики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Термодинамические процессы в компресорах

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Параметры состояния системы
  Техническая термодинамика изучает закономерности превращения энергии в процессах, происходящих в макроскопических системах, состоящих из большого числа частиц, и свойства тел

Смеси идеальных газов
  Смесь идеальных газов, химически не взаимодействующих между собой, называется идеальной газовой смесью. Для идеальной газовой смеси имеет место закон Дальтона:

Первый закон термодинамики
Термодинамический процесс – это изменение состояния системы во времени. Равновесным процессом называется процесс, при котором система переходит из начального состояния в конечное ч

Теплоемкость газов
Под теплоемкостью газа (удельной теплоемкостью) понимают количество тепла, необходимое для нагревания количественной единицы газа (1 кг, 1м3, 1 киломоль) на 10С (или 1 К). В с

Термодинамические процессы идеального газа
Задачей исследования термодинамических процессов является нахождение зависимостей и величин, характеризующих эти процессы: 1) уравнений, описывающих процесс; 2) аналитической взаи

Круговые процессы (циклы).
  В соответствии с первым законом термодинамики теплота и работа эквивалентны друг другу, однако процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая эне

Цикл Карно
В 1824 году французский инженер Сади Карно предложил цикл, дающий максимальное значение термического КПД. Он состоит из двух обратимых изотермических и двух обратимых адиабатных процессов.

Уравнение первого закона термодинамики для открытых систем
Движущееся по каналу рабочее тело образует поток, который представляет собой открытую термодина

Уравнение обращения воздействий. Сопла и диффузоры
Изменения условий течения газа, вызывающие соответствующие изменения параметров состояния потока, называются воздействиями. Существует пять видов воздействий: 1. Геометрическое воздействие

Сопла и диффузоры
Рассмотрим воздействие формы канала dF на адиабатное течение в соплах и диффузорах. Сопла – это каналы, в которых происходит расширение газа и увеличение скорости его движения. В диффузорах

Параметры торможения
Для адиабатического течения на участке 1-2 уравнение энергии имеет вид: , где h*

Приведенные параметры
Для расчета параметров можно использовать таблицы газодинамических функций, которые облегчают решение задач. При этом вводится приведенная скорость

Истечение газа из суживающегося сопла
При изучении этого процесса предполагается, что истечение происходит при постоянных параметрах газа на входе в сопло и на выходе из него. Пусть давление cреды, откуда происходит истечение,

Режимы работы суживающегося сопла
I режим– режим полного расширения , когда ,

Истечение газа из сопла Лаваля.
Комбинированное сопло Лаваля предназначено для использования больших перепадов давления и для получения скоростей истечения, превышающих критическую скорость (скорость звука). Условием закритическо

Истечение газов с учетом трения
Выведенные выше формулы скорости истечения и массового расхода газа справедливы только для обратимого процесса истечения, так как не учитывают силы трения рабочего тела о стенки канала и внутреннее

IV. Сравнение эффективности идеальных циклов
Термодинамическая эффективность циклов зависит от условий их осуществления. В одних условиях эффективен один цикл, в других – другой. 1. Сравним циклы Отто и Дизеля по значению термическог

Цикл газотурбинной установки
  Цикл Брайтона/Джоуля — термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутренн

Цикл ГТУ с регенерацией теплоты
Регенерация теплоты - подогрев воздуха после компрессора выхлопными газами - возможна при условии, что T4>T2 Для этого в схему установки необходимо ввести дополнительное ус

Цикл паротурбинной установки
  Современная стационарная теплоэнергетика базируется в основном на паросиловых установках. Продукты сгорания топлива в этих установках являются лишь промежуточным теплоносителем, а р

Цикл парокомпрессионной холодильной установки
  Парокомпрессионная холодильная установка работает по циклу, обратному циклу паросиловой устанвки. Компрессор всасывает из рефрижератора пар рабочего тела при давлении его р

Виды и состав топлив
  Топливом называются горючие вещества, которые сжигаются для получения в промышленныхцелях теплоты. Топливо по происхождению может быть естественным и искусственым, а по агрегатному

Теплота сгорания топлива
  Теплотой сгорания топлива называется количество теплоты, выделяющейся при сгорании единицы топлива. Теплоту сгорания твердого и жидкого топлива обычно относят к 1кг массы топлива, а

Температурное поле. Закон Фурье
  Температурное поле – это совокупность значений температуры во всех точках тела в данный момент времени

Дифференциальное уравнение теплопроводности
  Дифференциальное уравнение теплопроводности выводится на основе баланса энергии для элементарного объема и имеет вид:

Теплопроводность через плоскую стенку при граничных условиях первого рода.
    однослойная стенка многослойная стенка  

Теплопроводность через цилиндрическую стенку при граничных условиях первого рода.
однослойная стенка многослойная стенка     Рассмотрим одн

Основы теории подобия
Так как у поверхности твердого тела имеется слой неподвижной жидкости, через который теплота передается только теплопроводностью, то для этого слоя можно использовать закон Фурье. Принимая, что ось

Теплоотдача при вынужденной и свободной конвекции
  Рассмотрим часто встречающиеся на практике случаи вынужденной конвекции. Продольное обтекание пластины. При Re<5·105 (ламинарный режим):

Теплообмен излучением системы тел в прозрачной среде
  Рассмотрим теплообмен излучением между двумя параллелными пластинами с площадью1м2 с небольшим расстоянием между ними. Температуры пластин

Теплообмен излучением в газовой среде
  В отличие от твердых тел, имеющих сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн. Вне этих интервалов газы прозрачны и не излучают энерги

Класификация теплообменных аппаратов
Теплообменные аппараты (теплообменник) – это устройства, предназначенные для передачи теплоты от одной среды (жидкости или газа) к другой. Чаще всего в теплообменных аппар

Основы расчета теплообменного аппарата
Сущность расчета любого теплообменного аппарата - совместное решение уравнений теплового баланса и теплопередачи. 1) Уравнения теплового баланса Тепловой поток Q

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги