рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Термодинамические процессы идеального газа

Термодинамические процессы идеального газа - Лекция, раздел Философия, Термодинамическая система. Уравнение состояния. Задачей Исследования Термодинамических Процессов Является Нахождение Зависимо...

Задачей исследования термодинамических процессов является нахождение зависимостей и величин, характеризующих эти процессы:

1) уравнений, описывающих процесс;

2) аналитической взаимосвязи между параметрами рассматриваемого процесса, т.е. связи между параметрами p, v, T;

3) величины изменения внутренней энергии за процесс;

4) величины изменения энтальпии рабочего тела за процесс;

5) величины работы изменения объема рабочего тела и располагаемой работы;

6) количества тепла, подведенного за время процесса к рабочему телу или отведенного от него.

 

Изохорный процесс –процесс, протекающий при постоянном объеме.

n=

Уравнение, связывающее параметры начального и конечного состояний:

. (2.1)

Работа процесса:

. (2.2)

Располагаемая работа:

. (2.3)

Теплота процесса:

. (2.4)

При : . (2.5)

. (2.7)

Изменение термодинамических функций:

. (2.8)

. (2.9)

При : , (2.10)

 

Изобарный процесс – процесс, протекающий при постоянном давлении:

, . n=0.

Уравнение, связывающее параметры начального и конечного состояний:

, , . (2.13)

Работа процесса:

. (2.14)

Располагаемая работа: . (2.15)

Теплота процесса:

, . (2.16)

При : . (2.17)

Изменение термодинамических функций:

, . (2.20)

Изменение энтропии в изобарном процессе:

 

. (2.23)

Изотермический процесс – процесс, протекающий при постоянной температуре: . n=1

Уравнение, связывающее параметры начального и конечного состояний:

, . (2.26)

Работа процесса:

. (2.27)

Располагаемая работа:

(2.28)

Теплота процесса (с учетом того, что при для идеального газа ):

(2.29)

Изменение термодинамических функций:

, (2.30)

(2.31)

Адиабатный (изоэнтропный) процесс– процесс, протекающий без теплообмена с окружающей средой.

Уравнения, связывающие параметры начального и конечного состояний:

,

. (2.32)

, . (2.33)

, . (2.34)

Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором не происходит процесс теплообмена системы с окружающими телами. С точки зрения первого начала термодинамики это означает, что работа совершается газом только за счет внутренней энергии:

q = ∆u + l = 0;

Работа процесса:

=

(2.35)

Располагаемая работа: . (2.36)

Теплота процесса: . (2.37)

Изменение термодинамических функций:

, (2.38)

, . (2.39)

График адиабатного процесса — более крутая кривая, чем гипербола при изотермическом процессе. Это объясняется тем, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.

Политропный процесс –процесс, протекающий при постоянной теплоемкости =const и удовлетворяющий уравнению:

(2.42)

где- показатель политропы .

Это уравнение отличается от уравнения адиабаты (2.30) только показателем степени ( вместо ). Поэтому уравнения для параметров и работы процесса получаются из уравнений (2.30) – (2.34) заменой на .

Соотношение параметров в процессе:

Теплота процесса:

, (2.43)

где теплоемкость политропного процесса:

(2.44)

Изменение термодинамических функций:

, , (2.45)

Работа расширения /сжатия в политропном процессе. dl =pdv ,

.

Располагаемая работа

– Конец работы –

Эта тема принадлежит разделу:

Термодинамическая система. Уравнение состояния.

Термодинамическая система Уравнение состояния... Параметры состояния... Лекция Первый закон термодинамики...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Термодинамические процессы идеального газа

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Параметры состояния системы
  Техническая термодинамика изучает закономерности превращения энергии в процессах, происходящих в макроскопических системах, состоящих из большого числа частиц, и свойства тел

Смеси идеальных газов
  Смесь идеальных газов, химически не взаимодействующих между собой, называется идеальной газовой смесью. Для идеальной газовой смеси имеет место закон Дальтона:

Первый закон термодинамики
Термодинамический процесс – это изменение состояния системы во времени. Равновесным процессом называется процесс, при котором система переходит из начального состояния в конечное ч

Теплоемкость газов
Под теплоемкостью газа (удельной теплоемкостью) понимают количество тепла, необходимое для нагревания количественной единицы газа (1 кг, 1м3, 1 киломоль) на 10С (или 1 К). В с

Круговые процессы (циклы).
  В соответствии с первым законом термодинамики теплота и работа эквивалентны друг другу, однако процессы их взаимного превращения неравнозначны. Опыт показывает, что механическая эне

Цикл Карно
В 1824 году французский инженер Сади Карно предложил цикл, дающий максимальное значение термического КПД. Он состоит из двух обратимых изотермических и двух обратимых адиабатных процессов.

Уравнение первого закона термодинамики для открытых систем
Движущееся по каналу рабочее тело образует поток, который представляет собой открытую термодина

Уравнение обращения воздействий. Сопла и диффузоры
Изменения условий течения газа, вызывающие соответствующие изменения параметров состояния потока, называются воздействиями. Существует пять видов воздействий: 1. Геометрическое воздействие

Сопла и диффузоры
Рассмотрим воздействие формы канала dF на адиабатное течение в соплах и диффузорах. Сопла – это каналы, в которых происходит расширение газа и увеличение скорости его движения. В диффузорах

Параметры торможения
Для адиабатического течения на участке 1-2 уравнение энергии имеет вид: , где h*

Приведенные параметры
Для расчета параметров можно использовать таблицы газодинамических функций, которые облегчают решение задач. При этом вводится приведенная скорость

Истечение газа из суживающегося сопла
При изучении этого процесса предполагается, что истечение происходит при постоянных параметрах газа на входе в сопло и на выходе из него. Пусть давление cреды, откуда происходит истечение,

Режимы работы суживающегося сопла
I режим– режим полного расширения , когда ,

Истечение газа из сопла Лаваля.
Комбинированное сопло Лаваля предназначено для использования больших перепадов давления и для получения скоростей истечения, превышающих критическую скорость (скорость звука). Условием закритическо

Истечение газов с учетом трения
Выведенные выше формулы скорости истечения и массового расхода газа справедливы только для обратимого процесса истечения, так как не учитывают силы трения рабочего тела о стенки канала и внутреннее

Термодинамические процессы в компресорах
Компрессором называют машину для сжатия газов. Различные типы компрессоров широко применяются в самых разнообразных областях техники. По конструкционным признакам компрессоры подразделяют на две гр

IV. Сравнение эффективности идеальных циклов
Термодинамическая эффективность циклов зависит от условий их осуществления. В одних условиях эффективен один цикл, в других – другой. 1. Сравним циклы Отто и Дизеля по значению термическог

Цикл газотурбинной установки
  Цикл Брайтона/Джоуля — термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутренн

Цикл ГТУ с регенерацией теплоты
Регенерация теплоты - подогрев воздуха после компрессора выхлопными газами - возможна при условии, что T4>T2 Для этого в схему установки необходимо ввести дополнительное ус

Цикл паротурбинной установки
  Современная стационарная теплоэнергетика базируется в основном на паросиловых установках. Продукты сгорания топлива в этих установках являются лишь промежуточным теплоносителем, а р

Цикл парокомпрессионной холодильной установки
  Парокомпрессионная холодильная установка работает по циклу, обратному циклу паросиловой устанвки. Компрессор всасывает из рефрижератора пар рабочего тела при давлении его р

Виды и состав топлив
  Топливом называются горючие вещества, которые сжигаются для получения в промышленныхцелях теплоты. Топливо по происхождению может быть естественным и искусственым, а по агрегатному

Теплота сгорания топлива
  Теплотой сгорания топлива называется количество теплоты, выделяющейся при сгорании единицы топлива. Теплоту сгорания твердого и жидкого топлива обычно относят к 1кг массы топлива, а

Температурное поле. Закон Фурье
  Температурное поле – это совокупность значений температуры во всех точках тела в данный момент времени

Дифференциальное уравнение теплопроводности
  Дифференциальное уравнение теплопроводности выводится на основе баланса энергии для элементарного объема и имеет вид:

Теплопроводность через плоскую стенку при граничных условиях первого рода.
    однослойная стенка многослойная стенка  

Теплопроводность через цилиндрическую стенку при граничных условиях первого рода.
однослойная стенка многослойная стенка     Рассмотрим одн

Основы теории подобия
Так как у поверхности твердого тела имеется слой неподвижной жидкости, через который теплота передается только теплопроводностью, то для этого слоя можно использовать закон Фурье. Принимая, что ось

Теплоотдача при вынужденной и свободной конвекции
  Рассмотрим часто встречающиеся на практике случаи вынужденной конвекции. Продольное обтекание пластины. При Re<5·105 (ламинарный режим):

Теплообмен излучением системы тел в прозрачной среде
  Рассмотрим теплообмен излучением между двумя параллелными пластинами с площадью1м2 с небольшим расстоянием между ними. Температуры пластин

Теплообмен излучением в газовой среде
  В отличие от твердых тел, имеющих сплошные спектры излучения, газы излучают энергию лишь в определенных интервалах длин волн. Вне этих интервалов газы прозрачны и не излучают энерги

Класификация теплообменных аппаратов
Теплообменные аппараты (теплообменник) – это устройства, предназначенные для передачи теплоты от одной среды (жидкости или газа) к другой. Чаще всего в теплообменных аппар

Основы расчета теплообменного аппарата
Сущность расчета любого теплообменного аппарата - совместное решение уравнений теплового баланса и теплопередачи. 1) Уравнения теплового баланса Тепловой поток Q

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги