рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Функционально стоимостной анализ.

Функционально стоимостной анализ. - раздел Философия, МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ Под Функционально Стоимостным Анализом Понимают Метод Системного Анализа Функ...

Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических резервов объекта (технологического процесса, производства, системы управления) с целью повышения его эффективности.

Функциональные, геометрические и функционально-геометрические модели отражают соответственно только функциональные, только пространственные и одновременно функциональные и пространственные свойства оригинала.

Функционально стоимостной анализ (ФСА) функций объекта (технологического процесса, производства, системы управления) - это комплексная стоимостная оценка функций объекта, объединяющая функционально-физический, технико-экономический анализ, организационно-технические мероприятия.

Содержание работ при проведении ФСА

Информационный этап.

● Подготовка, сбор и систематизация информации об объекте ФСА и его аналогах.

Изучение объекта и его аналогов: составление структурной схемы, изучение технологии, исследование условий применения (эксплуатации), анализ патентной информации и рационализаторских предложений, связанных с совершенствованием объекта.

● Определение затрат и их структуры на стадиях разработки, производства и эксплуатации объекта.

Аналитический этап.

● Формулирование функций объекта и его элементов, группировка функций, построение функциональной модели объекта.

● Оценка значимости функций экспертным методом.

● Построение совмещенной функционально-структурной модели объекта.

● Оценка затрат, связанных с осуществлением функций.

● Сопоставительный анализ значимости функций и затрат на их реализацию для выявления зон (частей объекта) с неоправданно высокими затратами.

 
 

 

 


Системный анализ функций объекта требует знаний техники, технологии, управления, экономики, энергетики и т.д. Поэтому ФСА проводится группой специалистов разных профессий.

По своему содержанию – это комплексная стоимостная оценка функций объекта, объединяющая функционально-физический, технико-экономический анализ, организационно-технические мероприятия. Структурный анализ является составной частью функционально стоимостного анализа.

Оценку функций производят в виде функционально-стоимостных диаграмм.

Неопределенность функционирования системы

При переходе к математической постановке возникает проблема описания неопределенностей.

Описания явления, процесса, объекта могут иметь различного вида неопределенности: недостаточность информации, недостоверность описания, неоднозначность описания.

Неопределенность понимается в том смысле, что характеристики системы и среды находятся в условиях приближения и неполноты информации. Это могут быть неопределенности постановки задачи, выявления факторов внешней среды и степени влияния каждого фактора.

При исследованиях и решении задач с помощью математического моделирования (исследования явлений и процессов, проектирования, описания технологических процессов т.п.) уже на стадиях содержательной и концептуальной постановки задачи необходимо выяснить, насколько однозначно определены параметры и связи, в том числе с внешней средой.

Могут быть неопределенности не только природного характера, - например, неопределенности, обусловленные нечеткостью или противоречивостью целей самой оперирующей стороны - проектанта (например, желание достичь максимального эффекта при минимальных затратах).

Объективно существует неопределенность совокупности объектов и их взаимодействия с системой.

При синтезе модели (при проектировании системы) обычно задаются типовые совокупности объектов, типовые их взаимодействия, имеющие условный характер, но своими характеристиками охватывающие весь диапазон значений характеристик реальной обстановки (анализируется на основе информационно-аналитического обеспечения и базы данных).

Примеры неопределенностей (неизвестны будущие условия применения или использования систем):

- запуск космического корабля для исследования планеты (неизвестны условия внешней среды – условия функционирования аппарата, что значительно влияет на конструкцию и выбор оптимальных ее параметров);

- ассортимент предметов и товаров: для путешествия, для распродажи на ярмарке;

- выбор оптимального маршрута (запаса топлива, расстояния) при неизвестных погодных условиях;

- синтез модели будущей системы (неопределенность цели, стохастическая неопределенность): система аварийного ремонта технических устройств, система сооружений, защищающих от паводков, системы вооружений;

- распределение ресурсов: система перевозки пассажиров или грузов, максимум производства с минимумом затрат (распределение удобрений в сельхозпроиизводстве).

Формализация условий функционирования с учетом внешней среды – составление схемы функционирования, задание действий системы.

Виды неопределенностей

Решение проблемы неопределенности связано с классификацией неопределенностей и с выяснением причин возникновения неопределенностей. Причины возникновения неопределенности могут субъективного и объективного характера.

При построении модели выбор наиболее существенных для цели исследований параметров объекта и факторов внешней среды всегда субъективен и неформализуем.

Например, при моделировании технологического процесса к субъективным причинам возникновения неопределенностей можно отнести квалификацию работников, к объективным причинам – неопределенность свойств материалов, геометрических характеристик заготовок, характер износа инструмента, ошибки измерений.

К субъективным причинам может быть отнесено принятие решения о линеаризации модели, что приводит к математическим погрешностям.

Недостаточность информации – для различных характеристик системы, параметров явления или процесса информация может быть разной степени полноты, каждая из которых по разному влияет на решение задачи моделирования.

Недостоверность описания связана, прежде всего, с неадекватностью модели (например, некоторые элементы могут быть описаны по аналогам, что не всегда отвечает целям исследований).

Неоднозначность описания может иметь физическую или лингвистическую неопределенность.

Физическая неопределенность связана или с физической сущностью явления, процесса, объекта или с его измеряемыми проявлениями. Физическая неопределенность обуславливается как наличием нескольких возможностей, каждая из которых может реализовываться произвольным или случайным образом, так и неточностями измерений величин.

Лингвистическая неопределенность связана с использованием естественного языка и порождается множественностью значений слов или неоднозначностью смысла фраз.

Множественность значений слов понимается как омонимия (одним и тем же словом описываются различные физические объекты) и нечеткость описания (например, использование слова "несколько").

Неоднозначность смысла фраз может порождаться синтаксической ("казнить нельзя помиловать") или семантической (непонятность смысла слов или фраз) неопределенностью.

Неопределенность цели. Частные показатели эффективности могут быть несогласованными - увеличение одних может привести к уменьшению других, что делает задачу принятия решения противоречивой и неоднозначной (многокритериальная задача принятия решения в условиях неопределенности).

Неопределенность объектов, на которые направлены действия систем, действий реального противника или партнера.

В операции может участвовать много оперирующих сторон (людей или автоматов), причем, каждая из них стремиться достичь своей цели и имеет для этого определенные возможности (активные средства) и набор стратегий.

Если при постановке задачи исследования принято решение об однозначном описании в модели явления (процесса), и связи определены единственно возможным образом, то применяется четкое описание – все характеристики считаются детерминированными и связи между переменными - однозначными. В противном случае в зависимости от целей исследования и требуемой полноты описания можно использовать различные математические подходы описания неопределенностей.

Математически неопределенность может быть описана стохастически или с позиций нечетких множеств.

Стохастические неопределенности - неопределенные факторы представляют собой случайные величины с какими-то известными вероятностными характеристиками – законами распределения, математическими ожиданиями и др. Тогда показатель эффективности, зависящий от этих факторов, тоже будет случайной величиной.

Максимизировать случайную величину невозможно: при любом решении она остается случайной, неконтролируемой. Один из возможных подходов – замена случайных факторов их средними значениями (математическими ожиданиями). В этом случае задача становится детерминированной и может быть решена обычными методами. Эта задача неформальная – важно определить степень влияния случайности на исход операции. Такая замена правомочна при малой степени влияния случайности неопределенной величины на исход операции.

Под термином "случайное явление" понимается явление, относящееся к классу повторяемых явлений и обладающее свойством статистической устойчивости. При повторении однородных опытов, исход которых случаен, их средние характеристики проявляют тенденцию к устойчивости, стабилизируются.

При замене случайной величины показателя эффективности средним значением (математическим ожиданием) каждая отдельная операция при конкретных значениях случайных факторов может сильно отличаться от ожидаемой как в большую, так и в меньшую сторону. Такая замена возможна только при условии многочисленных повторений операции – в этом случае проигрыши в одних случаях компенсируется выигрышами в других.

Но и здесь могут встретиться трудности: алгоритм решения, настроенный на минимизацию среднего значения, может не дать возможности выполнить операцию для случаев, резко отличных от среднего значения (например, в системах массового обслуживания). Для исключения такой ситуации вводятся стохастические ограничения на показатель эффективности (в виде дополнительных требований выполнения операции в заданных пределах с очень большой вероятностью), что сильно усложняет задачу оптимизации.

Вероятностные характеристики неопределенных факторов в принципе могут существовать, но к моменту принятия решения неизвестны (например, при проектировании систем массового обслуживания неизвестны вероятностные характеристики потоков).

В такой ситуации система создается поэтапно: решения выбираются на основании средних значений случайных факторов со стохастическими ограничениями, при этом некоторые элементы решения остаются свободными. На основании этого создается приближенный вариант системы, проводится ее опытная эксплуатация, при которой накапливаются необходимые статистические данные, затем принятые решения пересматриваются с учетом уже известных вероятностных характеристик. Такие, совершенствующиеся в процессе применения алгоритмы управления, называются адаптивными.

Нестохастические неопределенности – для неопределенных факторов вообще не существует вероятностных характеристик (неопределенности нестохастического вида).

Такие неопределенности часто встречаются при прогнозировании внешних условий (условий применения) проектируемой системы.

Методические неопределенности:

- методическая неопределенность, связанная с неадекватностью математической модели реальным условиям;

- нечеткость формировании возможных стратегий применения системы;

- нечеткость задания условий функционирования.

В основе уменьшения неопределенности лежит анализ всевозможных условий применения систем (сценарии), определение диапазона их неопределенности, прогноз развития условий применения на весь период жизненного цикла.

Сценарии применения системы

При определении условий функционирования системы главной трудностью является неопределенность внешней среды.

Сценарий – качественное описание возможного использования системы в будущих условиях внешней среды в принятых допущениях о возможной прогнозной ситуации.

Цель разработки сценариев – подготовка информации для разработки прогноза развития системы и принятия управленческих решений по выработке стратегии ее проектирования и концепции системы.

Создание сценариев относится к типичным неформализуемым процедурам, тем не менее, в этой области накоплен определенный опыт, имеются свои эвристики. Например: крайние оценки (наихудший и наилучший случаи) – верхний и нижний уровни.

Основные пути создания сценариев – составление перечня факторов, влияющих на ход событий, учет ресурсов.

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ

Системность... Системные идеи лежат в основе деятельности человечества с начала его... Необходимость решения специфических проблем связанных с возникновением и развитием больших и сложных систем вызвала...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Функционально стоимостной анализ.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система". Определение понятия системы – это тоже модель (лингвистическая

Внешняя среда
Внешняя среда -набор существующих в пространстве и во времени факторов, которые оказывают действие на систему и которые испытывают влияние со стороны системы. Объекты,

Функции системы
Функции системы –действия компонентов системы (преобразования входов в выходы), необходимые для выполнения системой своих задач, обусловленных целью системы (интегративным свой

Системный подход
В основе системного подхода лежит стремление изучить объект (систему, явление, процесс) как нечто целостное и организованное, во всей полноте и многообразии связей – ориентирует на рассмотре

Развитие искусственной системы и ее жизненный цикл
В системе как элементе системы более высокого уровня могут накапливаться противоречия (проблемы), для разрешения которых система должна иметь новые функциональные свойства –

Целевой характер моделирования
Система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще». Таким образом, моделирование имеет це

Процесс моделирования
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через ч

Цели математического моделирования
Создание модели всей системы нереально – не существует модели «вообще». Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одно

Анализ чувствительности модели
При построении модели параметров и предположения могут быть приняты с некоторой степенью неопределенности, кроме того, параметры могут изменяться в зависимости от внешних условий и во времени. Чувс

Описание внешних воздействий
Внешние воздействия - совокупность факторов, воздействующих на систему и оказывающих влияние на эффективность ее функционирования. Модель внешних воздействий должна обладать следующими осн

Декомпозиция системы
Система представляется набором моделей, отображающих ее поведение на различных уровнях декомпозиции (стратах). Каждый уровень учитывает присущие ему свойства, переменные и зависимости. Дек

Подготовка исходных данных для математической модели
Исходные данные для разработки математической модели содержат выявленные законы функционирования системы в виде операторов, параметры и переменные модели, условные обозначения, классификацию исходн

Модель состава и структуры системы
Модель состава Модель состава – список элементов системы. Сложность построения модели состава состоит в ее неоднозначности. Это же относится и к границам

Виды структур
В основе исследования структуры лежит ее классификация. Принципы построения и вид модели структуры системы зависят от типа системы и целей исследований. При моделировании систем вообще и,

Установление функциональных зависимостей
После перехода от описания моделируемой системы к ее модели, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках. Исходн

Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множест

Формализация системы в виде автомата
Технические устройства дискретного действия для переработки информации лежат в основе вычислительных машин, автоматических устройств для управления объектами в системах регулирования и управления и

Формализация системы в виде агрегата
При выборе той или иной схемы формализации системы всегда возникает противоречивая задача – получить как можно более простую модель и обеспечить требуемую точность. При таком подходе различные сист

Моделирование процесса функционирования агрегата
Процесс функционирования агрегата состоит из скачков состояния в моменты поступления входных сигналов и выдачи выходных сигналов и изменений состояния между этими моментами. Цель моделиров

Моделирование агрегативных систем
Агрегативные системы (А-системы) - класс сложных систем, обладающий следующим свойством: существует такое (в общем случае неоднозначное) расчленение системы на элементы, при котором к

Модель сопряжения элементов
Математическая модель сложной системы помимо формального описания элементов обязательно включает формальные описания взаимодействия элементов – модель сопряжения. В модели сопряжения эл

Законы Ньютона.
Рассмотрим систему, модель которой может быть представлена как материальная точка, система материальных точек (механическая система). Материальная точка - тело, размеры и форма которого не

Закон сохранения импульса.
Количество движения (импульс) материальной точки Кi = mivi .Это векторная величина, его направление совпадает с направлением скорости. Количество движения (импульс) системы: К =

Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие). Если сила перемещает тело на некоторое расстояние, то она совершает над т

Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h. Чтобы поднять тело (увеличить расстояние от ц

Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s

Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.

Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы

Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном на

Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид

Модель колебательного процесса
Колебаниями или колебательным движением называется движение (изменение состояния), обладающее повторяемостью во времени - процесс изменения параметров системы с многократным чередованием их

Модель консервативной системы.
Рассеяние (диссипация) энергии происходит в связи с наличием того или иного вида трения (механическая энергия с течением времени уменьшается за счет преобразования в другие виды энергии, например,

Электрическая подсистема.
Электрическая модель является наиболее и универсальной для описания явлений и процессов различной природы. Типовыми простейшими элементами электрической подсистемы являются резистор с элек

Модели элементов гидравлических систем
Технические системы, в которых происходит перемещение несжимаемой жидкости, принято называть гидравлическими. Зарубин стр. 110 Участок трубопровода. По

Модели элементов пневматических систем
Под пневматическими понимают технические системы, в которых рабочей средой является воздух или газ. Рабочая среда, в отличие от газа является сжимаемой: ее плотность r существенно зависит от

Распределение транспортных единиц по линиям
Имеется n транспортных линий, по j–ой линии необходимо выполнить bj рейсов . В на

Выбор средств доставки грузов.
Имеется m грузообразующих пунктов с объемами грузов аi . Имеется n средств доставки грузов (вид

Экономическая интерпретация задач линейного программирования.
Предприятие располагает определенными, ограниченными производственными мощностями - активными средствами (станки, сырье, рабочая сила, энергия и т.д.). Для изготовления различных видов изделий испо

Перевозки взаимозаменяемых продуктов
Известны объемы и потребности продукции каждого вида. Если продукты, подлежащие перевозке, качественно совершенно различны (уголь, цемент, сахар), так что ни один из них не может быть использован в

Перевозка неоднородного продукта на разнородном транспорте.
Для обеспечения перевозок может быть использовано s автохозяйств, в каждом из которых r типов автомашин. Машины разных типов, обладая различными эксплуатационными характеристиками и р

Основные определения
Строгий подход к термину «управление» требует четкого ответа на вопрос, как и за счет чего может быть выполнена цель управления. Основная особенность управления - целенаправленность

Формальная запись системы с управлением
Основная особенность управляемых систем – в системе существуют свободные функции, которыми может распорядиться субъект (устройство, исследователь, лицо, принимающее решение) в своих интересах.

Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помо

Устойчивость движения систем
Система управления постоянно подвергается возмущениям, отклоняющим ее от заданного закона движения. Действие возмущения сопровождается восстанавливающим действием регулятора. В системе возни

Определение программного движения и управление движением
Потребности ракетной техники привели к совершенно новым задачам, поскольку кратковременное движение ракеты рассматривается как единый переходный процесс. Здесь возникла еще одна задача – опт

Модели автоматизированных систем управления
Всякая система управления с точки зрения ее функционирования решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на

Формализация отклонения течения производственного процесса от нормального
Рассмотренные схемы формализации предполагали нормальное течение процесса. Нарушения нормального течения процесса (параметры процесса выходят за допустимые пределы) могут быть связаны с расстройств

Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
Пусть процесс поточного производства штучных изделий складывается из операций обработки, сборки и управления. Линия сборки (совокупность устройств, обеспечивающих сборку изделия) состоит и

Формирование структуры системы
Структура формируется на основании сравнительного анализа альтернативных вариантов системы, обеспечивающих решение проблемы с учетом внешней среды и неопределенностей будущего функционирования.

Выбор основных проектных параметров системы
Формирование технического облика системы предполагает выбор рациональных значений основных проектных параметров системы, исходя из ее максимальной эффективности в принятых условиях применения.

Современное состояние САПР
Современное состояние САПР уже позволяет решать замкнутые задачи – реализовать сквозной процесс, включающий несколько этапов: анализ требований к изделию, разработка трехмерной модели изделия (в ря

Направления разработки проектной составляющей САПР
Направления разработки проектной составляющей САПР должны соответствовать ключевым направлениям развития проектируемых технических систем: прежде всего разрабатываются те САПР, внедрение которых в

Хранилища данных и системы оперативной аналитической обработки данных
Рассмотренные способы и возможные архитектуры информационных систем, предназначены для оперативной обработки данных, т.е. для получения текущей информации, позволяющей решать повседневные проблемы

Предпроектные исследования
Проектирование системы начинается с предпроектных исследований, в результате которых определяются цели системы, объем работ, вырабатываются критерии успешности проекта, оцениваются риски. В результ

Постановка задачи
Стадия постановки задачи включает: проведение системно-аналитического обследования и выработка концепции системы, разработка технического задания на проект. Системно-аналитическое обсле

Проектирование системы
На стадии проектирования на основе анализа предметной области и требований к системе, сформулированных в ТЗ, разрабатываются основные архитектурные решения. Архитектура процессов –

Архитектура программного обеспечения
Система состоит из двух видов программного обеспечения – общего и специального. Общее программное обеспечение: - программное обеспечение сетевого доступа к приложениям и БД

Организационное обеспечение системы
Сложность проектирования организационного обеспечения лежит в социальной, а не в технической сфере – задача психологов и психоаналитиков. Внедрение новых технологий обеспечивает неограниченный прям

Реализация и внедрение системы
Разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оц

Оценка потенциальной емкости рынка и потенциального объема продаж
Потенциальная емкость рынка товаров и услуг для конкретной системы (проекта): максимальный объем рынка за определенный период, соответствующий техническим и эксплуатационным возможностям сис

Оценка конкурентоспособности
Оценку конкурентов рассматриваемой системы проводится в два этапа: выявление возможных конкурентов и сравнительный анализ конкурентов. На первом этапе составляется общий список конкурентов

Метод определения чистой текущей стоимости.
Метод оценки приемлемости инвестиций на основе критерия NPV является базовым в современном инвестиционном анализе и широко применяется на практике. Чистая текущая стоимость - NPV

Метод расчета рентабельности инвестиций
Рентабельность инвестиций - PI (profitability index) - это показатель, позволяющий определить, в какой мере возрастет стоимость фирмы (богатство инвестора) в расчете на 1 доллар (рубль, грив

Метод расчета внутренней нормы прибыли
Внутренняя норма прибыли (внутренний коэффициент окупаемости инвестиций, поверочный дисконт) - IRR (internal rate of return) - представляет собой уровень доходности средств, направленных на

Расчет периода окупаемости инвестиций
Период окупаемости инвестиций РР (payback period) - это срок, который необходим для возмещения суммы первоначальных инвестиций (рассчитанный без дисконтирования). Если величины дене

Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги