Функционально стоимостной анализ.

Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических резервов объекта (технологического процесса, производства, системы управления) с целью повышения его эффективности.

Функциональные, геометрические и функционально-геометрические модели отражают соответственно только функциональные, только пространственные и одновременно функциональные и пространственные свойства оригинала.

Функционально стоимостной анализ (ФСА) функций объекта (технологического процесса, производства, системы управления) - это комплексная стоимостная оценка функций объекта, объединяющая функционально-физический, технико-экономический анализ, организационно-технические мероприятия.

Содержание работ при проведении ФСА

Информационный этап.

● Подготовка, сбор и систематизация информации об объекте ФСА и его аналогах.

Изучение объекта и его аналогов: составление структурной схемы, изучение технологии, исследование условий применения (эксплуатации), анализ патентной информации и рационализаторских предложений, связанных с совершенствованием объекта.

● Определение затрат и их структуры на стадиях разработки, производства и эксплуатации объекта.

Аналитический этап.

● Формулирование функций объекта и его элементов, группировка функций, построение функциональной модели объекта.

● Оценка значимости функций экспертным методом.

● Построение совмещенной функционально-структурной модели объекта.

● Оценка затрат, связанных с осуществлением функций.

● Сопоставительный анализ значимости функций и затрат на их реализацию для выявления зон (частей объекта) с неоправданно высокими затратами.

 
 

 

 


Системный анализ функций объекта требует знаний техники, технологии, управления, экономики, энергетики и т.д. Поэтому ФСА проводится группой специалистов разных профессий.

По своему содержанию – это комплексная стоимостная оценка функций объекта, объединяющая функционально-физический, технико-экономический анализ, организационно-технические мероприятия. Структурный анализ является составной частью функционально стоимостного анализа.

Оценку функций производят в виде функционально-стоимостных диаграмм.

Неопределенность функционирования системы

При переходе к математической постановке возникает проблема описания неопределенностей.

Описания явления, процесса, объекта могут иметь различного вида неопределенности: недостаточность информации, недостоверность описания, неоднозначность описания.

Неопределенность понимается в том смысле, что характеристики системы и среды находятся в условиях приближения и неполноты информации. Это могут быть неопределенности постановки задачи, выявления факторов внешней среды и степени влияния каждого фактора.

При исследованиях и решении задач с помощью математического моделирования (исследования явлений и процессов, проектирования, описания технологических процессов т.п.) уже на стадиях содержательной и концептуальной постановки задачи необходимо выяснить, насколько однозначно определены параметры и связи, в том числе с внешней средой.

Могут быть неопределенности не только природного характера, - например, неопределенности, обусловленные нечеткостью или противоречивостью целей самой оперирующей стороны - проектанта (например, желание достичь максимального эффекта при минимальных затратах).

Объективно существует неопределенность совокупности объектов и их взаимодействия с системой.

При синтезе модели (при проектировании системы) обычно задаются типовые совокупности объектов, типовые их взаимодействия, имеющие условный характер, но своими характеристиками охватывающие весь диапазон значений характеристик реальной обстановки (анализируется на основе информационно-аналитического обеспечения и базы данных).

Примеры неопределенностей (неизвестны будущие условия применения или использования систем):

- запуск космического корабля для исследования планеты (неизвестны условия внешней среды – условия функционирования аппарата, что значительно влияет на конструкцию и выбор оптимальных ее параметров);

- ассортимент предметов и товаров: для путешествия, для распродажи на ярмарке;

- выбор оптимального маршрута (запаса топлива, расстояния) при неизвестных погодных условиях;

- синтез модели будущей системы (неопределенность цели, стохастическая неопределенность): система аварийного ремонта технических устройств, система сооружений, защищающих от паводков, системы вооружений;

- распределение ресурсов: система перевозки пассажиров или грузов, максимум производства с минимумом затрат (распределение удобрений в сельхозпроиизводстве).

Формализация условий функционирования с учетом внешней среды – составление схемы функционирования, задание действий системы.

Виды неопределенностей

Решение проблемы неопределенности связано с классификацией неопределенностей и с выяснением причин возникновения неопределенностей. Причины возникновения неопределенности могут субъективного и объективного характера.

При построении модели выбор наиболее существенных для цели исследований параметров объекта и факторов внешней среды всегда субъективен и неформализуем.

Например, при моделировании технологического процесса к субъективным причинам возникновения неопределенностей можно отнести квалификацию работников, к объективным причинам – неопределенность свойств материалов, геометрических характеристик заготовок, характер износа инструмента, ошибки измерений.

К субъективным причинам может быть отнесено принятие решения о линеаризации модели, что приводит к математическим погрешностям.

Недостаточность информации – для различных характеристик системы, параметров явления или процесса информация может быть разной степени полноты, каждая из которых по разному влияет на решение задачи моделирования.

Недостоверность описания связана, прежде всего, с неадекватностью модели (например, некоторые элементы могут быть описаны по аналогам, что не всегда отвечает целям исследований).

Неоднозначность описания может иметь физическую или лингвистическую неопределенность.

Физическая неопределенность связана или с физической сущностью явления, процесса, объекта или с его измеряемыми проявлениями. Физическая неопределенность обуславливается как наличием нескольких возможностей, каждая из которых может реализовываться произвольным или случайным образом, так и неточностями измерений величин.

Лингвистическая неопределенность связана с использованием естественного языка и порождается множественностью значений слов или неоднозначностью смысла фраз.

Множественность значений слов понимается как омонимия (одним и тем же словом описываются различные физические объекты) и нечеткость описания (например, использование слова "несколько").

Неоднозначность смысла фраз может порождаться синтаксической ("казнить нельзя помиловать") или семантической (непонятность смысла слов или фраз) неопределенностью.

Неопределенность цели. Частные показатели эффективности могут быть несогласованными - увеличение одних может привести к уменьшению других, что делает задачу принятия решения противоречивой и неоднозначной (многокритериальная задача принятия решения в условиях неопределенности).

Неопределенность объектов, на которые направлены действия систем, действий реального противника или партнера.

В операции может участвовать много оперирующих сторон (людей или автоматов), причем, каждая из них стремиться достичь своей цели и имеет для этого определенные возможности (активные средства) и набор стратегий.

Если при постановке задачи исследования принято решение об однозначном описании в модели явления (процесса), и связи определены единственно возможным образом, то применяется четкое описание – все характеристики считаются детерминированными и связи между переменными - однозначными. В противном случае в зависимости от целей исследования и требуемой полноты описания можно использовать различные математические подходы описания неопределенностей.

Математически неопределенность может быть описана стохастически или с позиций нечетких множеств.

Стохастические неопределенности - неопределенные факторы представляют собой случайные величины с какими-то известными вероятностными характеристиками – законами распределения, математическими ожиданиями и др. Тогда показатель эффективности, зависящий от этих факторов, тоже будет случайной величиной.

Максимизировать случайную величину невозможно: при любом решении она остается случайной, неконтролируемой. Один из возможных подходов – замена случайных факторов их средними значениями (математическими ожиданиями). В этом случае задача становится детерминированной и может быть решена обычными методами. Эта задача неформальная – важно определить степень влияния случайности на исход операции. Такая замена правомочна при малой степени влияния случайности неопределенной величины на исход операции.

Под термином "случайное явление" понимается явление, относящееся к классу повторяемых явлений и обладающее свойством статистической устойчивости. При повторении однородных опытов, исход которых случаен, их средние характеристики проявляют тенденцию к устойчивости, стабилизируются.

При замене случайной величины показателя эффективности средним значением (математическим ожиданием) каждая отдельная операция при конкретных значениях случайных факторов может сильно отличаться от ожидаемой как в большую, так и в меньшую сторону. Такая замена возможна только при условии многочисленных повторений операции – в этом случае проигрыши в одних случаях компенсируется выигрышами в других.

Но и здесь могут встретиться трудности: алгоритм решения, настроенный на минимизацию среднего значения, может не дать возможности выполнить операцию для случаев, резко отличных от среднего значения (например, в системах массового обслуживания). Для исключения такой ситуации вводятся стохастические ограничения на показатель эффективности (в виде дополнительных требований выполнения операции в заданных пределах с очень большой вероятностью), что сильно усложняет задачу оптимизации.

Вероятностные характеристики неопределенных факторов в принципе могут существовать, но к моменту принятия решения неизвестны (например, при проектировании систем массового обслуживания неизвестны вероятностные характеристики потоков).

В такой ситуации система создается поэтапно: решения выбираются на основании средних значений случайных факторов со стохастическими ограничениями, при этом некоторые элементы решения остаются свободными. На основании этого создается приближенный вариант системы, проводится ее опытная эксплуатация, при которой накапливаются необходимые статистические данные, затем принятые решения пересматриваются с учетом уже известных вероятностных характеристик. Такие, совершенствующиеся в процессе применения алгоритмы управления, называются адаптивными.

Нестохастические неопределенности – для неопределенных факторов вообще не существует вероятностных характеристик (неопределенности нестохастического вида).

Такие неопределенности часто встречаются при прогнозировании внешних условий (условий применения) проектируемой системы.

Методические неопределенности:

- методическая неопределенность, связанная с неадекватностью математической модели реальным условиям;

- нечеткость формировании возможных стратегий применения системы;

- нечеткость задания условий функционирования.

В основе уменьшения неопределенности лежит анализ всевозможных условий применения систем (сценарии), определение диапазона их неопределенности, прогноз развития условий применения на весь период жизненного цикла.

Сценарии применения системы

При определении условий функционирования системы главной трудностью является неопределенность внешней среды.

Сценарий – качественное описание возможного использования системы в будущих условиях внешней среды в принятых допущениях о возможной прогнозной ситуации.

Цель разработки сценариев – подготовка информации для разработки прогноза развития системы и принятия управленческих решений по выработке стратегии ее проектирования и концепции системы.

Создание сценариев относится к типичным неформализуемым процедурам, тем не менее, в этой области накоплен определенный опыт, имеются свои эвристики. Например: крайние оценки (наихудший и наилучший случаи) – верхний и нижний уровни.

Основные пути создания сценариев – составление перечня факторов, влияющих на ход событий, учет ресурсов.