рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Цели математического моделирования

Цели математического моделирования - раздел Философия, МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ Создание Модели Всей Системы Нереально – Не Существует Модели «Вообще». ...

Создание модели всей системы нереально – не существует модели «вообще».

Из этого следует множественность моделей одного объекта: для каждой цели требуется своя модель одного и того же объекта (множественность моделей одного объекта, пример – модели самолета для исследований аэродинамики, прочности).

Моделирование имеет целевой характер - модель отображает не вообще оригинал, а то, что необходимо для исследований системы.

Каждая система существует или создается, чтобы реализовать определенную цель. Те переменные, которые не связаны по цепям с выходным показателем, не относятся к рассматриваемой системе и должны быть отброшены.

Возможные цели математического моделирования:

- выявление наиболее существенных факторов, формирующих свойства системы (в том числе не реализованной в природе - проекта) и ее поведение, выявления закономерностей, прогноз развития систем;

- выявление всей совокупности существенных связей в системе путем анализа (проигрывания, имитирования) всевозможных ситуаций;

- определение последствий воздействия на объект (задача типа «Что будет, если...»: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?);

- апробирование возможных вариантов управления сложной системой или процессом;

- прогнозирование состояния системы под действием различных факторов в различных ситуациях при недопустимости широкомасштабных экспериментов (с ядерной войной, экономикой страны, здоровьем населения, средой обитания, здоровьем человека);

- исследование характеристик системы при фиксированных свойствах;

- создание объектов с заданными свойствами и оптимизация некоторых характеристик - проектных параметров, для чего необходимо выявить те параметры, которые можно изменять в процессе моделирования (задача типа «Как сделать, чтобы...»);

2.2 Общие методы построения математической модели

Единой методики построения математических моделей не существует. Это обусловлено большим разнообразием классов систем.

Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через частности – основная проблема моделирования.

Абстрагирование - упрощенное описание системы, при котором отделяются самые существенные для исследования системы свойства и особенности поведения от несущественных. В основе абстрагирования – минимизация связей.

Выбор правильного набора абстракций (сущности и поведения) для заданной предметной области представляет собой главную (неформализуемую) задачу формирования модели.

Декомпозиция. Основная операция системного анализа (неформальная) – декомпозиция (разделение целого на части). Применительно к построению структуры модели – определение состава модели (компонентов).

Компонент – любая часть предметной области, которая может быть выделена как некоторая самостоятельная сущность. Это и система (модель) в целом, и любая часть системы (модели) – подсистема, элемент.

Основная сложность декомпозиции – определение базовых (неделимых) моделей компонентов, соотношение моделей микро- и макроподхода. В основе декомпозиции – достижение компромисса между полнотой набора формальных моделей рассматриваемой системы и простотой – он может быть достигнут, если в модель включаются только модели компонентов, существенных по отношению к цели моделирования.

При математическом моделировании сколько-нибудь сложного объекта описать его одной моделью для всестороннего исследования практически не удается, и если такая модель была бы построена, то она оказалась бы слишком сложной для количественного анализа.

Рассмотрение вместо самой системы (факта, явления, процесса, объекта) математической модели всегда несет идею упрощения – выявление существенного и отсекание несущественного (бритва Оккама·). Это позволит достичь необходимый компромисс между простотой описания и необходимостью учета многочисленных и разноплановых характеристик системы (проблема должна быть рассмотрена всесторонне и подробно) и простотой. Это неформальное действие – компромисс достигается после определения понятия существенности для данного исследования (степень влияния на результат).

Пример: оптимальное распределение инвестиций между предприятиями, при котором общий объем продукции был бы максимальным. Решение задачи зависит от принятого вида модели производства и вида модели целевой функции – в зависимости от этого оптимизационная задача может быть решена аналитически или методами имитационного моделирования.

Агрегирование представляет собой процесс, обратный декомпозиции – моделируется укрупненная система, количество рассматриваемых элементов сокращается (и соответственно связей).

Высокая степень агрегации (укрупненные объекты системы и основные связи между ними) дает возможность достаточно просто исследовать систему в целом, но при этом усложняется изучение каждого элемента (его структуры и связей), что может оказать влияние на исследование всей системы.

Низкая степень агрегации позволит достаточно подробно изучить каждый элемент, его структуру и связи, но при этом значительно усложнится изучение взаимодействия элементов и связей системы.

Чтобы понять во всех тонкостях поведение сложной системы, используется не одна модель – процесс исследований становится итеративным. Каждая модель может описывать либо укрупнено всю систему, либо более подробно определенную часть системы. В процессе исследований оценивается поведение каждой модели в обычных и необычных ситуациях, затем проводятся соответствующие доработки моделей: укрупненные модели строятся на базе уточненных подробных моделей подсистем.

Микроподход и макроподход в исследованиях системы.

При построении выделяют уровни предполагаемых исследований системы: микроподход или макроподход.

Микропоход: детальное изучение каждого компонента системы и всех внутренних процессов в системе. Изучаются структура, функции и связи каждого из выделенных элементов, совокупность и диапазон возможных изменений параметров, исследуется процесс функционирования системы в целом.

Изучение на микроуровне явления в физике позволяет определить реакцию элемента на внешние воздействия – его связи. Поведение системы более высокого уровня имеет качественно новый характер, но он определяется уже выявленными взаимосвязями.

Например, на нижнем уровне рассматривается хаотическое движение молекул, на более высоком уровне – уже поток газа, и его новые характеристики – давление, температура, плотность и др., которые определяются хаотическим движением молекул.

Математическая модель технической системы микроуровня - система дифференциальных уравнений, описывающая процессы на основе фундаментальных законов физики. Известна система таких уравнений для механики, гидравлики, термодинамики.

При рассмотрении технической системы на микроуровне выделяются отдельные блоки, агрегаты, узлы, каждый из которых в зависимости от протекающих в нем физических процессов можно рассматривать как механическую, тепловую, гидравлическую, электрическую систему.

Примеры таких моделей на микроуровне: исследования обтекания газом, тепловых режимов, исследование напряженного состояния элементов и узлов конструкций, определение прочности при различных видах нагружения.

Пример. Почему подпрыгивает мяч?

Почему резиновый мяч подскакивает, ударившись об асфальт?

Очевидно, что при ударе об асфальт мяч деформируется, сжимается. При этом давление газа в нём увеличивается. Стремясь расправиться, восстановить свою форму, мяч давит на асфальт и отталкивается от него. Вот, казалось бы, и всё, причина подскакивания выяснена. Однако приглядимся внимательнее. Для простоты оставим без рассмотрения процессы сжатия газа и восстановления формы мяча. Перейдём сразу к рассмотрению процесса в точке соприкосновения мяча и асфальта.

Мяч отскакивает от асфальта, поскольку две точки (на асфальте и на мяче) взаимодействуют: каждая из них давит на другую, отталкивается от неё. Зададимся вопросом: в чём состоит это давление? Как оно «выглядит»?

Углубимся в молекулярное строение вещества. Молекула резины, из которой сделан мяч, и молекула камня в асфальте давят друг на друга, то есть стремятся оттолкнуть друг друга. И опять всё вроде бы просто, но появляется новый вопрос: а что является причиной, источником явления «сила», которое принуждает каждую из молекул двигаться прочь, испытывать принуждение к движению от «соперницы»? Видимо, атомы молекул резины отталкиваются от атомов, из которых состоит камень. Если ещё короче, упрощённее, то один атом отталкивается от другого. И снова: почему?

Переходим к атомному строению вещества. Атомы состоят из ядер и электронных оболочек. Вновь упростим задачу и будем считать (достаточно обоснованно), что атомы отталкиваются либо своими оболочками, либо своими ядрами, в ответ получая новый вопрос: как именно происходит это отталкивание? Например, электронные оболочки могут отталкиваться вследствие своих одинаковых электрических зарядов, поскольку одноимённые заряды отталкиваются. И вновь: почему? Как это происходит?

Что заставляет отталкиваться друг от друга, например, два электрона? Нужно идти всё дальше и дальше вглубь строения вещества. Но уже здесь вполне заметно, что любая наша выдумка, любое новое объяснение физического механизма отталкивания будет ускользать всё дальше и дальше, как горизонт, хотя формальное, математическое описание при этом всегда будет точным и ясным. И при этом мы всегда будем видеть, что отсутствие физического описания механизма отталкивания не делает этот механизм, промежуточную его модель абсурдными, нелогичными, противоречащими здравому смыслу. Они в определённой степени упрощённые, неполные, но логичные, разумные, осмысленные.

Макроподход: исследование достаточно крупных элементов как неделимых единиц.

При исследовании системы игнорируется ее детальная структура, исследуется только общее поведение системы, оцениваются ее интегративные характеристики. Создается модель взаимодействия системы с внешней средой (модель "вход – выход"), формируются общие представления о системе.

Рассматриваются макрохарактеристики системы: границы системы, тип структуры, характер взаимосвязей "вход – выход", особенности функционирования (дискретное, непрерывное), особенности протекающих процессов, особенности жизненного цикла системы.

Построение системы на макроуровне предполагает разбиение системы на элементы, описание свойств каждого элемента с учетом связей с другими элементами, описание их объединения в систему.

При рассмотрении технической системы на макроуровне выделяются достаточно крупные элементы, которые в дальнейшем рассматриваются как неделимые единицы. Внутренние параметры элементов не рассматриваются - описываются взаимные связи между укрупненными элементами. Рассматриваются модели типовых технических элементов - отдельные однородные физические подсистемы (механическая, гидравлическая, электрическая), определяются зависимости между подсистемами.

Пример: модели макроуровня в экономике – это модели без управления – описываются процессы, течение которых в основных чертах определяется данным состоянием. В процессе агрегирования постепенно исчезают детали, происходит интегрирование, взаимное погашение различных человеческих факторов – производство выступает как единый процесс со всеми его объективными законами, не зависящими от воли отдельных людей. Такие сильно агрегированные модели позволяют увидеть явление в целом – модели описывают глобальную картину.

Формальная запись модели системы

Формализация задачи моделирования предполагает установление формальных правил, которые отражают связи между причинами и следствиями, и зависят от знания исследуемого объекта, цели исследования, вида создаваемой модели.

Формальная запись модели системы определяется формальным определением системы и модели системы. Но поскольку таких формальных определений нет, то не существует четкого определения формальной записи модели системы. Сложились определенные направления формализации, более или менее применимые к конкретным типам систем.

В терминах теоретико-множественного представления система может формально рассматриваться как некоторое абстрактное множество элементов А.

Элементы системы представляются как элементы отображающего ее множества: а1, а2, . . ., аn. Отображение характеристического свойства элемента - аi: f (аi).

Каждому элементу а множества А ставится в соответствие вполне определенный элемент b другого множества B, т.е. в виде отображения b (a) или

A → B : b (a) ÎB, a Î A.

Множество – совокупность элементов, выделенных по определенному признаку.

Отображение – закон, по которому каждому элементу некоторого заданного множества A ставится в соответствие вполне определенный элемент другого заданного множества B. Такое соотношение между элементами a ÎA и b ÎB записывается в виде b = f (a), или b = fa, или b = b (a). Пишут также f: AB и говорят, что отображение f действует из A в B, или отображение множества A во множество B. Множество A называется областью определения отображения, а множество {b = f (a), aA} ∈B - множеством значений отображения. Логически понятие "отображение" совпадает с понятиями функция, оператор, преобразование.

Оператором F из множества A во множество B называется правило, согласно которому каждому элементу a из некоторого множества A соответствует однозначно определенный элемент F (a) ∈B. Операторные схемы – пронумерованная последовательность действий.

С помощью этих понятий строится формальная запись математические модели системы.

Величина системы, отображаемой некоторым множеством Э, может быть представлена через:

- полный перечень отображений всех входящих в систему элементов: Э = {е1, е2, . . . еn},

- характеристический признак, определяющий принадлежность элемента множеству Э, отображающего систему: Э = {еi / f (еi)}, где i = 1,. .n,

- полный перечень входящих в систему подсистем: Э = {Э 1, Э 2, . . . , Эm}.

Формальным отображением связей системы являются отношения. Представления об отношениях универсальны, они пригодны для описания любого вида связей (материальных, энергетических, информационных, социальных).

В теоретико-множественной постановке отношения только устанавливают существования связей, но не определяют их характера. Отношения принадлежности Î и включения Ì формируют представление о величине и ресурсах системы. Они определяют, принадлежит Î или не принадлежит Ï элемент множеству Э. входит Ì или не входит Ë элемент еi (подсистема) в множество Э (систему).

– Конец работы –

Эта тема принадлежит разделу:

МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ СИСТЕМ

Системность... Системные идеи лежат в основе деятельности человечества с начала его... Необходимость решения специфических проблем связанных с возникновением и развитием больших и сложных систем вызвала...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Цели математического моделирования

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение понятия системы
Определение понятия "модель системы" предполагает, прежде всего, определение понятия "система". Определение понятия системы – это тоже модель (лингвистическая

Внешняя среда
Внешняя среда -набор существующих в пространстве и во времени факторов, которые оказывают действие на систему и которые испытывают влияние со стороны системы. Объекты,

Функции системы
Функции системы –действия компонентов системы (преобразования входов в выходы), необходимые для выполнения системой своих задач, обусловленных целью системы (интегративным свой

Системный подход
В основе системного подхода лежит стремление изучить объект (систему, явление, процесс) как нечто целостное и организованное, во всей полноте и многообразии связей – ориентирует на рассмотре

Развитие искусственной системы и ее жизненный цикл
В системе как элементе системы более высокого уровня могут накапливаться противоречия (проблемы), для разрешения которых система должна иметь новые функциональные свойства –

Целевой характер моделирования
Система может иметь практически необозримое количество сущностей (свойств), создание модели всей системы нереально – не существует модели «вообще». Таким образом, моделирование имеет це

Процесс моделирования
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через ч

Анализ чувствительности модели
При построении модели параметров и предположения могут быть приняты с некоторой степенью неопределенности, кроме того, параметры могут изменяться в зависимости от внешних условий и во времени. Чувс

Описание внешних воздействий
Внешние воздействия - совокупность факторов, воздействующих на систему и оказывающих влияние на эффективность ее функционирования. Модель внешних воздействий должна обладать следующими осн

Декомпозиция системы
Система представляется набором моделей, отображающих ее поведение на различных уровнях декомпозиции (стратах). Каждый уровень учитывает присущие ему свойства, переменные и зависимости. Дек

Подготовка исходных данных для математической модели
Исходные данные для разработки математической модели содержат выявленные законы функционирования системы в виде операторов, параметры и переменные модели, условные обозначения, классификацию исходн

Модель состава и структуры системы
Модель состава Модель состава – список элементов системы. Сложность построения модели состава состоит в ее неоднозначности. Это же относится и к границам

Виды структур
В основе исследования структуры лежит ее классификация. Принципы построения и вид модели структуры системы зависят от типа системы и целей исследований. При моделировании систем вообще и,

Установление функциональных зависимостей
После перехода от описания моделируемой системы к ее модели, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках. Исходн

Функционально стоимостной анализ.
Под функционально стоимостным анализом понимают метод системного анализа функций объекта (технологического процесса, производства, системы управления), направленный на поиск технико-экономических р

Пути уменьшения неопределенностей
Неопределенность уменьшается при разработке и анализе альтернативных вариантов, дополнительном анализе неопределенных факторов (сбор и обработка недостающих исходных данных, выявление среди множест

Формализация системы в виде автомата
Технические устройства дискретного действия для переработки информации лежат в основе вычислительных машин, автоматических устройств для управления объектами в системах регулирования и управления и

Формализация системы в виде агрегата
При выборе той или иной схемы формализации системы всегда возникает противоречивая задача – получить как можно более простую модель и обеспечить требуемую точность. При таком подходе различные сист

Моделирование процесса функционирования агрегата
Процесс функционирования агрегата состоит из скачков состояния в моменты поступления входных сигналов и выдачи выходных сигналов и изменений состояния между этими моментами. Цель моделиров

Моделирование агрегативных систем
Агрегативные системы (А-системы) - класс сложных систем, обладающий следующим свойством: существует такое (в общем случае неоднозначное) расчленение системы на элементы, при котором к

Модель сопряжения элементов
Математическая модель сложной системы помимо формального описания элементов обязательно включает формальные описания взаимодействия элементов – модель сопряжения. В модели сопряжения эл

Законы Ньютона.
Рассмотрим систему, модель которой может быть представлена как материальная точка, система материальных точек (механическая система). Материальная точка - тело, размеры и форма которого не

Закон сохранения импульса.
Количество движения (импульс) материальной точки Кi = mivi .Это векторная величина, его направление совпадает с направлением скорости. Количество движения (импульс) системы: К =

Работа, энергия, мощность
Силы служат причиной либо ускорения тела (динамическое действие), либо изменения его формы (статическое действие). Если сила перемещает тело на некоторое расстояние, то она совершает над т

Работа против силы тяжести.
Если тело движется в направлении действия силы тяжести, то над телом совершается работа A = G h или Aт = mg h. Чтобы поднять тело (увеличить расстояние от ц

Работа, затрачиваемая на ускорение.
Если под действием постоянной силы Fуск тело равномерно ускоренно перемещается на расстояние s, то над ним совершается работа Aуск = Fуск s

Работа против сил трения.
Движущееся тело теряет энергию из-за наличия трения, которое действует на поверхности соприкосновения тел и и затрудняет их перемещение относительно друг друга.

Динамика поступательного движения.
Основной закон поступательного движения: производная по времени от количества движения К материальной точки или системы точек относительно неподвижной (инерциальной) системы

Тело, брошено под углом к горизонту.
Как и в случае горизонтально брошенного тела, тело движется, в результате комбинации двух движений: равномерного прямолинейного движения под углом к горизонту и свободного падения в вертикальном на

Движение тела переменной массы.
Дифференциальное уравнение поступательного движения твердого тела, масса которого зависит от времени, имеет вид

Модель колебательного процесса
Колебаниями или колебательным движением называется движение (изменение состояния), обладающее повторяемостью во времени - процесс изменения параметров системы с многократным чередованием их

Модель консервативной системы.
Рассеяние (диссипация) энергии происходит в связи с наличием того или иного вида трения (механическая энергия с течением времени уменьшается за счет преобразования в другие виды энергии, например,

Электрическая подсистема.
Электрическая модель является наиболее и универсальной для описания явлений и процессов различной природы. Типовыми простейшими элементами электрической подсистемы являются резистор с элек

Модели элементов гидравлических систем
Технические системы, в которых происходит перемещение несжимаемой жидкости, принято называть гидравлическими. Зарубин стр. 110 Участок трубопровода. По

Модели элементов пневматических систем
Под пневматическими понимают технические системы, в которых рабочей средой является воздух или газ. Рабочая среда, в отличие от газа является сжимаемой: ее плотность r существенно зависит от

Распределение транспортных единиц по линиям
Имеется n транспортных линий, по j–ой линии необходимо выполнить bj рейсов . В на

Выбор средств доставки грузов.
Имеется m грузообразующих пунктов с объемами грузов аi . Имеется n средств доставки грузов (вид

Экономическая интерпретация задач линейного программирования.
Предприятие располагает определенными, ограниченными производственными мощностями - активными средствами (станки, сырье, рабочая сила, энергия и т.д.). Для изготовления различных видов изделий испо

Перевозки взаимозаменяемых продуктов
Известны объемы и потребности продукции каждого вида. Если продукты, подлежащие перевозке, качественно совершенно различны (уголь, цемент, сахар), так что ни один из них не может быть использован в

Перевозка неоднородного продукта на разнородном транспорте.
Для обеспечения перевозок может быть использовано s автохозяйств, в каждом из которых r типов автомашин. Машины разных типов, обладая различными эксплуатационными характеристиками и р

Основные определения
Строгий подход к термину «управление» требует четкого ответа на вопрос, как и за счет чего может быть выполнена цель управления. Основная особенность управления - целенаправленность

Формальная запись системы с управлением
Основная особенность управляемых систем – в системе существуют свободные функции, которыми может распорядиться субъект (устройство, исследователь, лицо, принимающее решение) в своих интересах.

Модели систем автоматического управления
Система автоматического управления стремится сохранить в допустимых пределах отклонения (рассогласования) ошибки между требуемыми и действительными значениями управляемых переменных при помо

Устойчивость движения систем
Система управления постоянно подвергается возмущениям, отклоняющим ее от заданного закона движения. Действие возмущения сопровождается восстанавливающим действием регулятора. В системе возни

Определение программного движения и управление движением
Потребности ракетной техники привели к совершенно новым задачам, поскольку кратковременное движение ракеты рассматривается как единый переходный процесс. Здесь возникла еще одна задача – опт

Модели автоматизированных систем управления
Всякая система управления с точки зрения ее функционирования решает три основные задачи: сбор и передача информации об управляемом объекте, переработка информации, выдача управляющих воздействий на

Формализация отклонения течения производственного процесса от нормального
Рассмотренные схемы формализации предполагали нормальное течение процесса. Нарушения нормального течения процесса (параметры процесса выходят за допустимые пределы) могут быть связаны с расстройств

Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
Пусть процесс поточного производства штучных изделий складывается из операций обработки, сборки и управления. Линия сборки (совокупность устройств, обеспечивающих сборку изделия) состоит и

Формирование структуры системы
Структура формируется на основании сравнительного анализа альтернативных вариантов системы, обеспечивающих решение проблемы с учетом внешней среды и неопределенностей будущего функционирования.

Выбор основных проектных параметров системы
Формирование технического облика системы предполагает выбор рациональных значений основных проектных параметров системы, исходя из ее максимальной эффективности в принятых условиях применения.

Современное состояние САПР
Современное состояние САПР уже позволяет решать замкнутые задачи – реализовать сквозной процесс, включающий несколько этапов: анализ требований к изделию, разработка трехмерной модели изделия (в ря

Направления разработки проектной составляющей САПР
Направления разработки проектной составляющей САПР должны соответствовать ключевым направлениям развития проектируемых технических систем: прежде всего разрабатываются те САПР, внедрение которых в

Хранилища данных и системы оперативной аналитической обработки данных
Рассмотренные способы и возможные архитектуры информационных систем, предназначены для оперативной обработки данных, т.е. для получения текущей информации, позволяющей решать повседневные проблемы

Предпроектные исследования
Проектирование системы начинается с предпроектных исследований, в результате которых определяются цели системы, объем работ, вырабатываются критерии успешности проекта, оцениваются риски. В результ

Постановка задачи
Стадия постановки задачи включает: проведение системно-аналитического обследования и выработка концепции системы, разработка технического задания на проект. Системно-аналитическое обсле

Проектирование системы
На стадии проектирования на основе анализа предметной области и требований к системе, сформулированных в ТЗ, разрабатываются основные архитектурные решения. Архитектура процессов –

Архитектура программного обеспечения
Система состоит из двух видов программного обеспечения – общего и специального. Общее программное обеспечение: - программное обеспечение сетевого доступа к приложениям и БД

Организационное обеспечение системы
Сложность проектирования организационного обеспечения лежит в социальной, а не в технической сфере – задача психологов и психоаналитиков. Внедрение новых технологий обеспечивает неограниченный прям

Реализация и внедрение системы
Разработчики производят итеративное построение реальной системы на основе полученных в предыдущей фазе моделей, а также требований нефункционального характера. Конечные пользователи на этой фазе оц

Оценка потенциальной емкости рынка и потенциального объема продаж
Потенциальная емкость рынка товаров и услуг для конкретной системы (проекта): максимальный объем рынка за определенный период, соответствующий техническим и эксплуатационным возможностям сис

Оценка конкурентоспособности
Оценку конкурентов рассматриваемой системы проводится в два этапа: выявление возможных конкурентов и сравнительный анализ конкурентов. На первом этапе составляется общий список конкурентов

Метод определения чистой текущей стоимости.
Метод оценки приемлемости инвестиций на основе критерия NPV является базовым в современном инвестиционном анализе и широко применяется на практике. Чистая текущая стоимость - NPV

Метод расчета рентабельности инвестиций
Рентабельность инвестиций - PI (profitability index) - это показатель, позволяющий определить, в какой мере возрастет стоимость фирмы (богатство инвестора) в расчете на 1 доллар (рубль, грив

Метод расчета внутренней нормы прибыли
Внутренняя норма прибыли (внутренний коэффициент окупаемости инвестиций, поверочный дисконт) - IRR (internal rate of return) - представляет собой уровень доходности средств, направленных на

Расчет периода окупаемости инвестиций
Период окупаемости инвестиций РР (payback period) - это срок, который необходим для возмещения суммы первоначальных инвестиций (рассчитанный без дисконтирования). Если величины дене

Задачи управления проектами
Успешность деятельности предприятия зависит от непрерывной последовательности управленческих решений по инвестиции в проект и управление проектом. Эти решения базируются на анализе внешней среды кА

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги