рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Принципы преобразования тепловых параметров

Принципы преобразования тепловых параметров - раздел Философия, Раздел 1 Метрология   6.1.1. Терморезистивный Метод Терморезистивный Метод...

 

6.1.1. Терморезистивный метод

Терморезистивный метод является наиболее распространенным и хорошо апробированным на практике. Принцип терморезистивного преобразования основан на температурной зависимости активного сопротивления металлов, сплавов и полупроводников, обладающих высокой воспроизводимостью и достаточной стабильностью по отношению к разнообразным дестабилизирующим факторам

Температурную чувствительность термометрического материала принято характеризовать температурным коэффициентом (ТК). Типичные случаи поведения термометрической зависимости представлены на рис. 6.1 (W =ΔR/R0). Не трудно заметить, что металлы 1 обладают положительным, но малым ТК, полупроводниковые материалы 2 – отрицательным ТК примерно на порядок больше, чем у металлов, а полупроводниковые сегнетоэлектрические керамики 3 – положительным ТК и тоже довольно значительным.

В ряду металлических материалов, используемых в термометрии, первое место, несомненно, принадлежит платине (Pt), которая широко используется в рабочих, образцовых и эталонных термометрах.

 

Рисунок 6.1– Зависимость ТК от температуры для металлических
и полупроводниковых материалов

Температурный диапазон измерения платины от -269 до 1100°С. Термометрическая платина для рабочих термометров характеризуется ТК

W100= =1,3910,001.

Для воспроизведения международной практической термометрической шкалы используется особо чистая платина в виде отожженной свободной от напряжения проволоки, имеющей ТКС

W100= = 1,39250.

Зависимость сопротивления платинового термометра от температуры экстраполируется следующими выражениями:

W = 1 + At + Bt2

в диапазоне температуры от 0 до 850 ºС;

W = 1 + At + Bt2 + C(t – 100)t3

в диапазоне температуры от минус 200 до 0 °С,

где А = 3,968×10-3 К-1; В = –5,8×10-7 К-2; С = –4,1×10-12 К-4.

С целью обеспечения взаимозаменяемости рабочие термометры при изготовлении разбиваются на группы. В пределах группы термометры имеют общую функцию преобразования. Допуски на группу устанавливаются сообразно с требуемой точностью измерения.

Наиболее широко в рабочих термометрах используется платиновая проволока диаметром 0,05 мм при бифилярной намотке чувствительного элемента.

Рабочие термометры в зависимости от допуска на группу и значения и допуска на W100 подразделяются на пять классов (табл. 6.1).

Таблица 6.1

Параметр Дополнительные отклонения градуировочной характеристики для классов
I II III IV V
, Ом 0,05 0,1 0,2 0,4 0,8
W100W 1,391 1,391 1,391 1,391 1,391

 

Наиболее употребимые и стандартизованные номиналы чувствительных элементов платиновых рабочих термометров представлены в табл. 6.2.

Таблица 6.2

Условное обозначение номинальной функции преобразования R0, Ом Диапазон измерений, °С
1 П –50 ...+1100
5 П –100 ...+1100
10 П –200 ...+1000
Гр 21 –260 ...+1000
50 П –260 ...+1000
100 П –260 ...+1000
500 П –260 ...+300

 

Второе место по распространенности применения в качестве термометрического материала в рабочих термометрах занимает медь. Поскольку медь относится к числу легко окисляемых металлов, диапазон ее применения ограничивается областью 200 ºС (при защитных покрытиях до 300 ºС).

В диапазоне температур от –50 до +200 ºС медь имеет почти линейную температурную зависимость, которая с достаточной степенью точности описывается соотношением

W = 1 + αТ.

Допустимые отклонения номинала медных термометров сопротивления в группе и допуск W100 приведены в табл. 6.3.

Таблица 6.3

Параметр Дополнительные отклонения градуировочной характеристики для классов
II III IV V
, Ом 0,1 0,2 0,5 1,0
W100W 1,4280,0010 1,4280,0020 1,4280,0030 1,428

 

Принятые номиналы сопротивления медных термометров приведены в табл. 6.4.

Таблица 6.4

Условное обозначение номинальной функции преобразования R0, Ом Диапазон измерений, °С
10М –50 ...+200
50М –50 ...+200
Гр23 –50 ...+180
100М –200 ...+200

 

К числу недостатков меди относится ее малое удельное сопротивление – ρ = 0,017 Ом×мм/м, что сказывается на размерах чувствительного элемента.

Значительно реже платины и меди в термометрии используется никель. К его достоинствам относятся высокие ТКС (W100 = 1,64) и удельное сопротивление ρ = 0,072 Ом×мм/м. Однако никель имеет значительно меньшую линейность термохарактеристики. В диапазоне температур от 0 до 200°С никель имеет термометрическую зависимость вида

W = 1+At+Bt2,

где А = 5,43×10-3 К-1; В = 7,85×10-6 К-2.

Проволочные чувствительные элементы являются доминирующими в практической термометрии. Однако в настоящее время с ними успешно конкурируют термометры в металлопленочном исполнении В качестве ЧЭ таких термометров используются пленочные термосопротивления (ТС). Материалом для пленочных ТС служит никель (Ni), медь (Cu), платина (Pt). При этом Pt-TC имеют наибольшие точность и диапазон измерения. Менее прецизионные, но более дешевые и технологичные ТС на основе меди и никеля используют для более узкого, чем у платиновых ТС, диапазона температур.

Такие термометры изготавливаются на различных подложках – из ситалла, сапфира, поликора – методом вакуумного напыления и имеют особую перспективу при массовом производстве. Большая часть операций по их изготовлению и подгонке номинала сопротивления практически полностью автоматизирована.

В металлопленочном исполнении чувствительные элементы характеризуются несколько меньшим ТКС по сравнению с проволочными (до 10 %).

Температурная зависимость сопротивления тонких металлических пленок от температуры практически линейна, поэтому схемы с такими ТС не требуют использования линеаризирующих элементов.

Общим недостатком ТС на основе металлических пленок являются небольшие номиналы сопротивления ТС из-за малого значения удельного сопротивления и ТКС металлов (а соответственно мала и температурная чувствительность).

Достаточно широкое использование в настоящее время нашли толстопленочные ТС, изготавливаемые на основе резистивных паст. Пасты позволяют изготавливать ТС от небольших номиналов (десятки и сотни Ом) до больших (кОм и МОм) с отрицательными и положительными ТКС (от минус 4 до 0,5) %/°С, что недостижимо для тонко-пленочных ТС.

Температурная зависимость сопротивления толстопленочных ТС – нелинейная, поэтому для линеаризации термохарактеристик применяют включение их в мостовую схему или используют последовательно-параллельное соединение ТС с постоянными резисторами.

Высокой температурной чувствительностью обладают дискретные и интегральные полупроводниковые ТС.

Для дискретного полупроводникового ТС зависимость сопротивления от температуры достаточно точно описывается выражением

RT =RN exp(–B/T), αR= –B/T2,

где Т – абсолютная температура; и – соответственно сопротивление при и Т градусах; – константа материала ТС (справочная величина), имеющая размерность (К).

Из данных уравнений видно, что термохарактеристика ТС – нелинейная.

Кроме того, у данного типа ТС ТКС (αR) меньше нуля, поэтому их сопротивление уменьшается с увеличением температуры, причем до­вольно резко.

Для линеаризации температурных характеристик ТС используется включение параллельно и/или последовательно соединенных с ними постоянных резисторов, которые линеаризируют зависимость , хотя и уменьшают их термочувствительность.

Величина линеаризирующего резистора определяется по формуле

RP = RTm (B – Tm/B + 2 Tm),

где RTm – сопротивление терморезистора при температуре Tm (точка перегиба термохарактеристики).

Перспективными для использования в миниатюрных датчиках температуры являются диффузионные и ионно-легированные терморезисторы. Благодаря широкому диапазону номиналов возможности изменения их ТКС в процессе изготовления, а также из-за малых габаритов и небольшой инерционности они находят все большее применение в термометрах.

У диффузионных и ионно-легированныхтерморезисторов основными характеристиками являются:

1) ТКС не менее 0,5%/°С (минус 0,05…0,5);

2) удельное сопротивление (rS) 100…1300 Ом/;

3) диапазон рабочих температур минус 60…180 °С.

Такие терморезисторы обладают гораздо большей линейностью, чем рассмотренные ранее дискретные ТС.

Для измерения высоких температур от 200 и до 2000°С используются термопарные ТЧЭ, ЧЭ которых является неразъемное соединение (сварка, адгезинное) двух разнородных металлов, например, меди и медно-никелевого сплава, железа и медно-никелевого сплава или платины и платинородиевого сплава (рис. 6.2).

Термоэлектрическое явление объясняется главным образом тем, что концентрация свободных электронов в металле зависит от температуры. При наличии разности температур в проводнике возникает ЭДС и начинает протекать ток, при этом в более нагретом конце проводника возникает большая концентрация электронов по сравнению с менее нагретым.

Для создания замкнутой электрической цепи и измерения термоЭДС используют два спая, соединенных последовательно, один из которых является компенсационным, а второй – рабочим, помещенным в точку замера температуры. Компенсационный спай или помещается в точку с постоянной стабильной (реперной) температурой (чаще всего помещается в сосуд с тающим льдом 0°С), или же используется специальная электронная схема-компенсатор точки таяния льда.

ТермоЭДС, возникающая между спаями, в зависимости от типа термопары составляет от 7 до 75 мкВ/°С.

Так, для термопары «медь–констант» Е = 40 мкВ/°С в диапазоне 0....100°С, т. е. при разности температур спаев 100°С, термоЭДС равна 4,3 мВ. Для увеличения выходного сигнала используется соединение нескольких термоспаев в термобатарею (рис. 2.2). В этом случае суммарная термоЭДС в n раз больше термоЭДС одного спая. Математические соотношения, описывающие термоэлектрический ЧЭ следующие:

Еавх,Т0) = Eавх) + Eав 0),

где Eав х) и Eав0) – термоЭДС элементов цепи.

Так как Eав х) при То = 0°C – реперная температура, то Ех, 0) = Eав х).

 
 

г

Рисунок 2.2–Термопарные термочувствительные элементы


– Конец работы –

Эта тема принадлежит разделу:

Раздел 1 Метрология

Раздел Метрология... Метрология наука об измерениях методах и средствах обеспечения их единства и способах достижения требуемой...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Принципы преобразования тепловых параметров

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Терминология
Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. в метрологии используются следующие величины и их определения:

Единицы измерения
В 1960 г. на XI Генеральной конференции по мерам и весам была утверждена Международная система единиц (СИ). В основе Международной системы единиц лежат семь единиц, охватывающих следующие

Погрешность измерений
В практике использования измерений очень важным показателем становится их точность, которая представляет собой ту степень близости итогов измерения к некоторому действительному значению, которая ис

Основные термины и определения
1. Стандартизация – деятельность, направленная на достижение упорядочения в определенной области посредством установления положений для всеобщего и многократного применения в отнош

Объекты стандартизации
Объектом стандартизации могут быть продукция, услуги и процессы, имеющие перспективу многократного воспроизведения и (или) использования. В стандартах регламентируются методы измерения, контроля и

Система сертификации
Система сертификации создается федеральными органами исполнительной власти организациями и представляет собой совокупность участников сертификации, осуществляющих сертификацию по правилам, установл

Обязательная сертификация
Обязательная сертификация осуществляется в случаях, предусмотренных законодательными актами Российской Федерации. При обязательной сертификации действие сертификата и знака соответствия распростран

Добровольная сертификация
Добровольная сертификация проводится по инициативе заявителей (изготовителей, продавцов, исполнителей) в целях подтверждения соответствия продукции требованиям стандартов, технических условий, реце

Измерение линейных размеров
К методам измерения линейных размеров, нашедшим наибольшее применение на практике, относятся следующие: 1. Метод непосредственной оценки. 2. Методы сравнения с мерой - дифференциа

Измерение давления
Из всех параметров наиболее измеряемым является давление. Давление – одна из основных величин, связанных с описанием поведения жидких и газообразных сред. В нефтегазовом комплексе измерение давлени

Сенсоры деформации
Сенсоры деформации используются для различных целей: измерения уровня деформаций и механических напряжений, возникающих в узлах и конструкциях технологического оборудования, вооружения, изделий лет

Датчики силы
К силе принято относить следующие параметры: усилие, вес, крутящий элемент. Данные параметры вызывают деформацию (растяжение, сжатие, сдвиг) воспринимающего элемента, поэтому базовым чувствительным

Объемные термочувствительные элементы
В промышленных ДТ используются стандартные ТЧЭ, чаще всего термисторы и терморезисторы проволочного, фольгового или дискретного типов. Из перечисленной группы терморезисторы выпускаются серийно.

Визуальные УМ
Наиболее простыми по конструкции и принципу действия являются УМ, основанные на визуальном измерении высоты уровня жидкости. Конструктивно они представляют собой трубки или водомерные стёкла

Косвенные измерения
При прямых измерениях не всегда удается получить значение всех исследуемых величин (токов, напряжений, мощности, фазы и др.) методом прямого измерения. Это обусловливается отсутствием специальных п

Средства измерения электрических величин
Условное графическое изображение электроизмерительных приборов показано в табл. 8.1 Таблица 8.1 Наименование приборов, их элементов и физических величин

Цифровые ЭИП
В настоящее время наиболее современными ЭИП являются цифровые, так как имеют гораздо больше функций и меньшую погрешность измерения, чем аналоговые. Рассмотрим несколько типовых цифровых и

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги