рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Источники Искусственного света

Источники Искусственного света - раздел Философия, Производственное Освещение   Лампа Накаливания – Источник Света С Излучателем В Вид...

 

Лампа накаливания – источник света с излучателем в виде проволоки (нити или спирали) из тугоплавкого металла (обычно вольфрама), накаливаемой электрическим током до температуры 2 5003 300 К, близкой к температуре плавления вольфрама (рис. 5). Световая отдача лампы накаливания 1035 лм/Вт; срок службы до 2 тыс. ч. Этот вид ламп все еще преобладает и производится в широком ассортименте, несмотря на имеющиеся в производстве более экономичные источники света. По конструкции лампы накаливания бывают вакуумные (НВ), газонаполненные (НГ), биспиральные (НБ), биспиральные с криптоно-ксеноновым наполнением (НБК). Имеются также зеркальные лампы, являющиеся лампами-светильниками.

 

 
 

Все большее распространение получают галогенные лампы накаливания. Наличие в колбе лампы паров галогенов (йода или брома), уменьшающих количество испарения вольфрама, позволило повысить температуру накала вольфрамовой нити, в результате чего световая отдача увеличивается до 40 лм/Вт и спектр излучаемого света приближается к естественному. Кроме того пары вольфрама, испаряющегося с нити накала, соединяются с йодом и вновь оседают на нить, препятствуя ее истощению. Срок службы этих ламп увеличился до 35 тыс. ч. Двухцокольные линейные галогенныелампы (рис. 5, г) используются для освещения широких поверхностей. Благодаря применению упрочненных держателей, нити накала обладают высокой устойчивостью к механическим воздействиям. Лампы совмещают в себе высокую светоотдачу, отличный коэффициент цветопередачи, постоянный световой поток в течение всего срока службы, мгновенное перезажигание, возможности регулировки яркости.

Преимущества ламп накаливания:

– малая стоимость;

– отсутствие необходимости пускорегулирующей аппаратуры, при включении зажигаются практически мгновенно;

– возможность работы как на постоянном токе (любой полярности), так и на переменном;

– возможность изготовления ламп на самое разное напряжение
(от долей вольта до сотен вольт);

– отсутствие токсичных компонентов и как следствие отсутствие необходимости инфраструктуры по сбору и утилизации;

– отсутствие мерцания и гудения при работе на переменном токе;

– непрерывный спектр излучения;

– устойчивость к электромагнитному импульсу;

– возможность использования регуляторов яркости;

– независимость работы от условий окружающей среды и температуры;

– световой поток к концу срока службы снижается незначительно (на 15 %).

Недостатки:

– низкая световая отдача (в три–шесть раз меньше, чем у газоразрядных ламп);

– относительно малый срок службы;

– зависимость световой отдачи и срока службы от напряжения;

– цветовая температура лежит в пределах 2 300–2 900 K (преобладают желтые и красные лучи, что искажает цветопередачу, поэтому их не применяют при работах, требующих различения цветов);

– световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности, потребляемой от электрической сети, весьма мал и не превышает 4 %;

– температура колбы галогенных ламп может достигать 500 °С, поэтому при установке ламп следует соблюдать нормы противопожарной безопасности (например, обеспечить достаточное расстояние между поверхностью перекрытия и подвесным потолком);

– обладают большой яркостью, но не дают равномерного распределения светового потока, для исключения прямого попадания света в глаза и вредного воздействия большой яркости на зрение нить накаливания лампы необходимо закрывать;

– при применении открытых ламп почти половина светового потока не используется для освещения рабочих поверхностей, поэтому ЛН необходимо устанавливать в осветительной арматуре.

Ограничения импорта, закупок и производства. В связи с необходимостью экономии электроэнергии и сокращения выброса углекислого газа в атмосферу, во многих странах введен или планируется ввод запрета на производство, закупку и импорт ламп накаливания, с целью стимулирования замены их на энергосберегающие лампы (компактные люминесцентные лампы и др.).

С 1 сентября 2009 г. в Евросоюзе вступил в силу поэтапный запрет на производство, закупку магазинами и импорт ламп накаливания (за исключением специальных ламп). С 2009 г. запрет коснется ламп мощностью
≥ 100 Вт, ламп с матовой колбой ≥ 75 Вт и др.; ожидается, что к 2012 г. будет запрещен импорт и производство ламп накаливания меньшей мощности.

23 ноября 2009 г. президент России подписал принятый ранее Госдумой закон «Об энергосбережении и повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации». Согласно документу, с 1 января 2011 г. к обороту на территории страны не допускается продажа электрических ламп накаливания мощностью 100 Вт и более; с 1 января 2013 г. – электроламп мощностью 75 Вт и более, а с 1 января 2014 г. – ламп мощностью 25 Вт и более.

Основные характеристики ламп накаливания (ЛН) [4; 7]:

номинальное значение напряжения;

номинальное значение мощности;

номинальное значение светового потока (иногда силы света);

срок службы;

габаритные размеры (полная длина L, диаметр D).

Технические данные ламп накаливания приведены в табл. 1 прил. 2 [4].

В настоящее время все большее применение находят газоразрядные лампы, в которых излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции. Основным преимуществом газоразрядных ламп является их экономичность. Световая отдача этих ламп колеблется в пределах 40...110 лм/Вт. Срок их службы доходит до 12 тыс. ч. С их помощью легче создать равномерное освещение, спектр их излучения ближе к естественному свету.

По составу среды различают следующие газоразрядные лампы:

с газом;

с парами металлов и различных соединений.

По давлению:

газоразрядные лампы низкого давления (от 0,1 до 25 кПа);

газоразрядные лампы высокого давления (от 25 до 1000 кПа);

газоразрядные лампы сверхвысокого давления (от 1000 кПа).

По типу разряда:

дуговые;

– тлеющие;

импульсные.

По источнику излучения:

газоразрядные лампы, у которых источником света являются атомы, ионы или молекулы;

фотолюминесцентные лампы, у которых источником света являются люминофоры, возбуждаемые разрядом;

электродосветные лампы, у которых источником света являются электроды, раскаленные до высокой температуры.

По охлаждению:

газоразрядные лампы с естественным охлаждением;

газоразрядные лампы с принудительным охлаждением.

Наиболее распространены газоразрядные лампы низкого давлениялюминесцентные(рис. 6). Световая отдача – до 100 лм/Вт. Они имеют форму цилиндрической стеклянной трубки с двумя электродами. Трубка наполнена дозированным количеством ртути (3080 мг) и смесью инертных газов (часто аргон) при давлении около 400 Па (3 мм рт. ст.). По обоим концам трубки закреплены электроды. При включении электрический ток, протекающий между электродами, вызывает в парах ртути электрический разряд, сопровождающийся излучением (электролюминесценция). Внутренняя поверхность трубки покрыта тонким слоем люминофора, который преобразует ультрафиолетовое излучение, возникающее при газовом электрическом разряде, в видимый свет. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью. В настоящее время промышленность выпускает несколько типов люминесцентных ламп, отличающихся по цветности: лампы дневного света (ЛД), лампы дневного света с улучшенной цветопередачей (ЛДЦ), лампы наиболее близкие к естественному свету (ЛЕ), лампы белого цвета (ЛБ), лампы теплого белого цвета (ЛТБ), лампы холодного белого цвета (ЛХБ), лампы дневного света с исправленной цветопередачей (ЛДЦ), лампы рефлекторные с внутренним отражающим слоем (ЛР) и др.

Преимущества люминесцентных ламп:

широкий диапазон цветности;

благоприятные спектры излучения, обеспечивающие высокое качество цветопередачи;

по сравнению с лампами накаливания обеспечивают такой же световой поток, но потребляют в 45 раз меньше энергии;

имеют низкую температуру колбы;

повышенный срок службы (до 615 тыс. ч.).

Недостатки люминесцентных ламп:

содержание ртути (в замкнутом помещении разбитая ЛЛ может давать кратковременное превышение ПДК ртути более чем в 160 раз, загрязнение выше ПДК может сохраняться несколько десятков лет)[1];

относительная сложность схемы включения, шум дросселей;

ограниченная единичная мощность и большие размеры при данной мощности;

невозможность переключения ламп, работающих на переменном токе, на питание от сети постоянного тока;

зависимость характеристик от температуры внешней среды (световой поток снижается при повышенных температурах);

значительное снижение потока к концу срока службы;

относительная дороговизна;

вредные для зрения пульсации светового потока с частотой 100 Гц при переменном токе 50 Гц;

срок действия компактных ЛЛ не всегда соответствует заявленному и может быть сравним со сроком ламп накаливания при существенно большей стоимости.

Пульсация светового потока возникает вследствие малой инерционности свечения люминофора. Это может привести к появлению стробоскопического эффекта, который проявляется в искажении зрительного восприятия движущихся или вращающихся объектов. При кратности или совпадении частоты пульсации светового потока и частоты вращения
объекта вместо одного предмета видны изображения нескольких, искажаются скорость и направление движения. Стробоскопический эффект очень опасен, так как вращающиеся части механизмов, детали, инструмент могут показаться неподвижными и стать причиной травматизма.

Основные характеристики люминесцентных ламп:

номинальная мощность;

номинальное напряжение;

номинальный ток лампы;

световой поток;

габаритные размеры (полная длина L, диаметр D);

пульсации светового потока.

Технические данные основных типов ЛЛ приведены в табл. 2 Приложения 2 [2; 4].

К газоразрядным лампам высокого и сверхвысокого давления относят лампы: ДРЛ дуговые ртутные люминесцентные; ДРЛР рефлекторные дуговые ртутные лампы с отражающим слоем; ДРИ ртутные лампы высокого давления с добавкой иодидов металла; ДКсТ дуговые ксеноновые трубчатые и др.

Принцип действия ламп ДРЛ (рис. 7): в горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда электролюминесценция. При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определенного значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 1015 минут после включения (в зависимости от температуры окружающей среды, чем холоднее, тем дольше будет разгораться лампа).

Электрический разряд в газе создает видимое белое, без красной и голубой составляющих спектра, и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 1015 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 2530 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается, после выключения должна остыть перед следующим включением.

Лампы ДРЛ позволяют создавать большие уровни освещенности и рекомендуются к применению при высоте помещения более 12...14 м, при наличии в воздухе дыма, пыли и копоти. Однако по спектральному составу излучения они сильно отличаются от люминесцентных. Их нельзя применять там, где недопустимо искажение цветовосприятия.

Наиболее экономичными являются ДРИ – ртутные лампы высокого давления с добавкой иодидов металла, их часто называют металлогалогенными. Светоотдача этих ламп достигает 80 лм/Вт.

Трубчатые ксеноновые газоразрядные лампы высокого давления ДКсТ (дуговые ксеноновые трубчатые), имеющие высокую мощность (от 2 до 100 кВт), применяются в основном для наружного освещения в связи с опасностью ультрафиолетового облучения работающих в помещении. Разработаны специальные ксеноновые лампы ДКсТЛ в колбе из легированного кварца, предназначенные для применения в производственных помещениях, расположенных на Севере нашей страны, где они служат одновременно и для ультрафиолетового облучения работающих.

Натриевые газоразрядные лампы высокого давления ДНаТ (дуговые натриевые трубчатые) обладают наивысшей эффективностью и удовлетворительной цветопередачей. Применяются для освещения помещений с большой высотой, где требования к цветопередаче невысоки или в декоративных целях.

Преимущества ламп ДРИ:

– большой срок службы (до 12–20 тыс. ч.);

– большая световая отдача;

– компактность при большой единичной мощности;

– обеспечивают более равномерное освещение и рекомендованы для применения в светильниках общего освещения.

Недостатки:

– преобладание в спектре сине-зеленой части, ведущее к неудовлетворительной цветопередаче;

– возможность работы только на переменном токе;

– длительность разгорания при включении (примерно 7 мин) и начало повторного зажигания после даже очень кратковременного перерыва питания лампы лишь после остывания (примерно 10 мин);

– пульсации светового потока больше, чем у люминесцентных ламп;

– значительное снижение светового потока к концу срока службы (до 70 %);

– наличие ртути (от 20 до 150 мг ртути).

Повреждения герметичности лампы ДРЛ вполне хватит, чтобы серьезно загрязнить, например, цех авиационного завода размерами сто на триста метров и с высотой потолков до 10 метров.

Технические данные ламп ДРЛ приведены в табл. 3 прил. 2 [2; 4].

Светодиодное освещение – одно из перспективных направлений технологий искусственного освещения, основанное на использовании светодиодов в качестве источника света. Светодиод или светоизлучающий диод (СД, СИД, LED – англ. Light-emitting diode) полупроводниковый прибор, излучающий свет при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра, его цветовые характеристики зависят от химического состава использованного в нем полупроводника.

Светодиодное освещение, благодаря эффективному расходу электроэнергии и простоте конструкции, нашло широкое применение в ручных осветительных приборах, в светотехнике для создания дизайнерского освещения специальных современных дизайн-проектов. Надежность светодиодных источников света позволяет использовать их в труднодоступных для частой замены местах (встроенное потолочное освещение и т. д.).

Преимущества светодиодного освещения:

– экономичность – световая отдача светодиодных систем уличного освещения достигает 140 лм/Вт;

– срок службы в 30 раз больше по сравнению с лампами накаливания;

– возможность получать различные спектральные характеристики без применения светофильтров;

– малые размеры;

– отсутствие ртутных паров (в сравнении с люминесцентными лампами);

– малое ультрафиолетовое и инфракрасное излучение;

– незначительное относительное тепловыделение (для маломощных устройств);

– высокая прочность.

Недостатки:

– высокая цена (отношение цена/люмен у сверхъярких светодиодов в 50–100 раз больше, чем у обычной лампы накаливания);

– низкая предельная температура: мощные осветительные светодиоды требуют внешнего радиатора для охлаждения;

– необходимость низковольтного источника питания постоянного тока для обеспечения питания светодиодов от сети;

– высокий коэффициент пульсаций светового потока при питании напрямую от сети промышленной частоты.

Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников.

Электрический светильник– это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.

Тип светильников определяется характером производственного помещения и технологического процесса, необходимой безопасностью, качеством освещения и удобством обслуживания [2; 4; 7]. Слепящее действие света устраняется при правильном выборе высоты подвеса определенного типа светильника.

Важной характеристикой светильника является его коэффициент полезного действия – отношение фактического светового потока светильника Фф к световому потоку помещенной в него лампы Фл, т. е. .

По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света.

 

Особенности освещения рабочих мест,

– Конец работы –

Эта тема принадлежит разделу:

Производственное Освещение

Сибирский государственный аэрокосмический университет... имени академика М Ф Решетнева... Производственное...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Источники Искусственного света

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Производственное освещение
Методические указания к выполнению лабораторной работы по курсу «Безопасность жизнедеятельности» Составители: Окладникова Екатерина Ни

Основные показатели освещенности
  Свет имеет сложную корпускулярно-волновую природу и представляет собой часть оптической области спектра. К видимому излучению оптического спектра относят излучение с длиной волны от

Системы и виды освещения
  Естественное – создается прямыми солнечными лучами и рассеянным светом небосвода и меняется в зависимости от географической широты, времени года, времени суток, степени облач

Освещения
  Нормы естественного, искусственного и совмещенного освещения зданий и сооружений, а также нормы искусственного освещения селитебных зон, площадок предприятий и мест производства раб

Освещению
  Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы. При организации производственн

Оснащенных компьютерами
  Освещение при работе с ПЭВМ имеет свои особенности. Это связано с тем, что зрительный анализатор (глаз) при работе за компьютером, как правило, воспринимает как отраженный от клавиа

Основы расчета освещения
  Основной задачей является определение требуемой площади световых проемов – при естественном освещении; определение мощности осветительных установок – при искусственном

Контроль освещенности
  Основным прибором для измерения освещенности является объективный люксметр, основанный на принципе измерения фототока (рис. 9) [1; 3; 5]. Ток возникает в цепи селенового фотоэлемент

Проведение измерений
Измерение освещенности от искусственного освещения Измерение освещенности при рабочем и аварийном освещениях следует производить в темное время суток, когда отношение естест

Порядок проведения работы
1. Исследование КЕО методом измерений: – измерить естественную освещенность Eв в помещении с боковым односторонним естественным освещением и выключенным искусствен

Производственного освещения
  1. Определяем разряд и подразряд зрительной работы, нормы освещенности на рабочем месте, используя исходные данные своего варианта: наименьший размер объекта различения – 0

Для помещений жилых, общественных и вспомогательных зданий
Помещения Искусственное освещение КЕО, %, при освещении освещенность рабочих поверхностей, лк верхнем ил

Коэффициент светового климата
Световые проемы Ориентация световых проемов по сторонам горизонта Коэффициент светового климата, m Номер группы администр

Группы административных районов по ресурсам светового климата
Номер группы Административный район           Московская, Смоленская, Вла

Значение световых характеристик окон η0 при боковом освещении
Отношение длины помещения ln к его глубине В Значение световой характеристики при отношении глубины помещения В к его высоте от уровня услов

Покрытия при верхнем освещении
Схема фонарей Отношение площади выходного отверстия S2 к сумме площадей входного отверстия S1 и боковой поверхности проема

С исправленной цветностью
  Тип лампы Мощность, Вт Напряжение на лампе, В Ток лампы, А Световой поток, лм, после 100 ч горения

Необходимых для оценки освещения
Статус (ГОСТ, СН, СНиП, МУ и т. д.) и № документа Наименование документа СНиП 23-05-95* Строительные нормы и правила Ро

БИБЛИОГРАФИЧЕСКИЙ СПИСОК
  Основной 1. Безопасность и охрана труда : учеб. пособие для вузов / под ред. О. Н. Русака. – СПб. : Изд-во МАНЭБ, 2001. – 279 с. 2. Производственное о

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги