рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Энергия гармонических колебаний.

Энергия гармонических колебаний. - раздел Философия, Методическое пособие для учащихся ВТУЗов По дисциплине: физика. Механические колебания Гармонические Колебания Важным Частным Случаем Периодических Колебан...

Гармонические колебания

Важным частным случаем периодических колебаний являются гармонические колебания, т.е. такие изменения физической величины, которые идут по закону

где . Из курса математики известно, что функция вида (1) меняется в пределах от А до -А , и что наименьший положительный период у нее . Поэтому гармоническое колебание вида (1) происходит с амплитудой А и периодом .

Не следует путать циклическую частоту и частоту колебаний . Между ними простая связь. Так как , а , то .

Величина называется фазой колебания. При t=0 фаза равна , потому называют начальной фазой.

Отметим, что при одном и том же t:

где - начальная фаза .Видно, что начальная фаза для одного и того же колебания есть величина, определенная с точнотью до . Поэтому из множества возможных значений начальной фазы выбирается обычно значение начальной фазы наименьшее по модулю или наименьшее положительное. Но делать это необязательно. Например, дано колебание , то его удобно записать в виде и работать в дальнейшем с последним видом записи этого колебания.

Можно показать, что колебания вида:

где и могут быть любого знака, с помощью простых тригонометрических преобразований всегда приводится к виду (1), причем , , а не равна , вообще говоря. Таким образом, колебания вида (2) являются гармоническими с амплитудой и циклической частотой . Не приводя общего доказательства, проиллюстрируем это на конкретном примере.

Пусть требуется показать, что колебание

будет гармоническим и найти амплитуду , циклическую частоту , период и начальную фазу . Действительно,

-

Видим, что колебание величины S удалось записать в виде (1). При этом , .

Попробуйте самостоятельно убедится, что

.

Естественно, что запись гармонических колебаний в форме (2) ничем не хуже записи в форме (1), и переходить в конкретной задаче от записи в данной форме к записи в другой форме обычно нет необходимости. Нужно только уметь сразу находить амплитуду, циклическую частоту и период, имея перед собой любую форму записи гармонического колебания.

Иногда полезно знать характер изменения первой и второй производных по времени от величины S, которая совершает гармонические колебания (колеблется по гармоническому закону). Если , то дифференцирование S по времени t дает , . Видно, что S' и S'' колеблются тоже по гармоническому закону с той же циклической частотой , что и величина S, и амплитудами и , соответственно. Приведем пример.

Пусть координата x тела, совершающего гармонические колебания вдоль оси x, изменяется по закону , где х в сантиметрах, время t в секундах. Требуется записать закон изменения скорости и ускорения тела и найти их максимальные значения. Для ответа на поставленный вопрос заметим, что первая производная по времени от величины х есть проекция скорости тела на ось х, а вторая производная х есть проекция ускорения на ось х: , . Продифференцировав выражение для х по времени, получим , . Максимальные значения скорости и ускорения :.

– Конец работы –

Эта тема принадлежит разделу:

Методическое пособие для учащихся ВТУЗов По дисциплине: физика. Механические колебания

Методическое пособие для учащихся ВТУЗов... По дисциплине физика...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Энергия гармонических колебаний.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Незатухающие колебания
Незатухающие колебания Рассмотpим пpостейшую механическую колебательную систему с одно

Частота, период, циклическая частота, амплитуда, фаза колебаний.
ЧАСТОТА КОЛЕБАНИЙ, число колебаний в 1 с. Обозначается u. Если T - период от колебаний, то u = 1/T; измеряется в герцах (Гц). Угловая частота колебаний w = 2pu = 2p/T рад/с. ПЕРИОД колебан

Метод векторных диаграмм. Сложение колебаний одного направления.
Метод векторных диаграмм. Каждому гармоническому колебанию с частотой можно поставить в соответствие вращающийся с

Биения. Сложение перпендикулярных колебаний. Затухающие механические колебания.
Биения - колебания с периодически меняющейся амплитудой, возникающие в результате наложения двух гармонических колебаний с несклько различными, но близкими частотами. Б. возникают вследствие того,

Уравнение затухающих колебаний. Амплитуда, частота, коэффициент затухания.
Уравнение затухающих колебаний представим в виде где

Резонанс.
. Таким образом, амплитуда вынужденных колебаний изменяется с изменением частоты внешнего воздействия. При

Уравнение плоской бегущей волны.
Гармоническая бегущая волна является плоской волной, т.к. ее волновые поверхности (ω(t-)+φ0

Типы волн: продольные и поперечные, плоские, сферические.
Будем полагать, что имеем сплошную упругую среду, например, твердое тело, жидкости, газы. Для упругой среды характерно возникновение упругих деформаций при внешнем воздействии на нее. Эти деформаци

Волновая поверхность, волновой фронт.
Волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым ф

Свойства волн.
Генерация волн. Волны могут генерироваться различными способами. Генерация локализованным источником колебаний (излучателем, антенной). Спонтанная генерация волн в объёме при возн

Энергия волны.
Энергия бегущей волны. Вектор плотности потока энергии Упругая среда, в которой распространяется волна, обладает как кинетической энергией колебательного движения частиц так и потенциально

Поток энергии.
Поток энергии – количество энергии , переносимое волной через некоторую поверхность в единицу времени: Ве

Вектор Умова.
Пусть в некоторой среде вдоль оси х распространяется упругая плоская продольная волна, описываемая уравнением (1.91')

Стоячие волны.
Если в среде распространяется несколько волн, то результирующее колебание каждой частицы среды представляет собой сумму колебаний, которые совершала бы частица от каждой волны в отдельности. Это ут

Интерференция.
Интерференция волн - явления усиления или ослабления амплитуды результирующей волны в зависимости от соотношения между фазами складывающихся двух или нескольких волн с одинаковыми периодами. Если в

Координаты пучностей и узлов стоячей волны.
Если навстречу друг другу распространяются две гармонические волны S1=Acos(ωt-kх) и S2=Acos(ωt+kх), то образуется стоячая волна S=S1+S2=2Аcoskx cosωt. Иссл

Отличие бегущих волн от стоячих.
Бегущая волна - волновое движение, при котором поверхность равных фаз (фазовые волновые фронты) перемещается с конечной скоростью, постоянной в случае однородных сред. С бегущей волной, групповая с

Источники электромагнитных волн. Волновое уравнение.
Источники электромагнитных волн Проводник с током. Магнит. Электрическое поле (переменное). Вокруг проводника, через которых проходит ток и он постоянен. При изменении силы

Свойства электромагнитных волн: поперечность, синфазность колебаний векторов напряженностей электрического и магнитного полей.
Поперечность. электромагнитные волны являются поперечными. Электромагнитной волной

Вектор Пойнтинга.
Пойнтинга вектор, вектор плотности потока электромагнитной энергии. Назван по имени английского физика Дж. Г. Пойнтинга (J. Н. Poynting; 1852—1914). Модуль П. в. равен энергии, переносимой за едини

Шкала электромагнитных волн.
(шкала электромагнитных

Когерентность волн.
Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и во

Интерференция.
ИНТЕРФЕРЕНЦИЯ ВОЛН - явление, наблюдающееся при одновременном распространении в пространстве нескольких волн и состоящее в стационарном (или медленно изменяющемся) пространственном распределении ам

Расчет интерференционной картины от двух источников.
Расчет интерференционной картины от двух когерентных источников. Рассмотрим две когерентные световые волны, исходящие из источников

Координаты минимумов и максимумов интенсивности.
Оптическая длина путей лучей. Условия получения интерференционных максимумов и минимумов. В вакууме скорость света равна

Полосы равной толщины.
Полосы равной толщины, один из эффектов оптики тонких слоев, в отличие от полос равного наклона, наблюдаются непосредственно на поверхности прозрачного слоя переменной толщины (рис. 1). Возникновен

Применение интерференции.
Практическое применение интерференции света разнообразно: контроль качества поверхностей, создание светофильтров, просветляющих покрытий, измерение длины световых волн, точное измерение расстояния

Принцип Гюйгенса-Френеля.
Гюйгенса-Френеля принцип,приближённый метод решения задач о распространении волн, особенно световых. Согласно первоначальному принципу Х. Гюйгенса (1678), каждый элемент поверхност

Метод зон Френеля.
Вычисление интеграла в пункте в общем случае - трудная задача. В случаях, если в задаче существу

Дифракция Френеля.
Пусть на пути сферической световой волны, испускаемой источником S, расположен непрозрачный экран с круглым отверстием радиуса r0. Если отверстие открывает четное число зон Френеля, то в

Пятно Пуассона.
es   С помощью спирали Френеля можно получ

Поляризация света.
Поляризация света, одно из фундаментальных свойств оптического излучения (света), состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распростр

Закон Малюса.
Поставим на пути естественного света два поляроида, оси пропускания которых развернуты друг относительно

Двойное лучепреломление.
Как уже упоминалось в, закон преломления может не выполняться в анизотропных средах. Действительно, этот закон утверждает, что:

Интерференция поляризованного света.
Важный случай И. с. — интерференция поляризованных лучей (см. Поляризация света). В общем случае, когда складываются две различно поляризованные когерентные световые волны, происходит векторное сло

Оптически активные вещества.
Оптически активные вещества, среды, обладающие естественной оптической активностью. О.-а. в. подразделяются на 2 типа. Относящиеся к 1-му из них оптически активны в любом агрегатном состоянии (саха

Дисперсия света.
Дисперсия света (рассеяние света) - явление разложения белого света при прохождении его через призму, диф

Закон Бугера-Ламберта.
Бугера - Ламберта, определяет постепенное ослабление параллельного монохроматического (одноцветного) пучка света при распространении его в поглощающем веществе. Если мощность пучка

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги