рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Автономное тестирование компонентов программного обеспечения

Автономное тестирование компонентов программного обеспечения - раздел Философия, 1. Основные Принципы И Стадии Тестирования; Ручное Тестирование – ...

1. Основные принципы и стадии тестирования; ручное тестирование – статический и динамический подход, методы ручного тестирования: тестирование исходного текста, сквозные просмотры, проверка за столом, оценки программ.

Процесс разработки программного обеспечения, в том виде, как он определяется в современной модели жизненного цикла программного обеспечения, предполагает три стадии тестирования:

• автономное тестирование компонентов программного обеспечения;

• комплексное тестирование разрабатываемого программного обеспечения;

• системное или оценочное тестирование на соответствие основным критериям качества.

 

Для повышения качества тестирования рекомендуется соблюдать следующие основные принципы:

• предполагаемые результаты должны быть известны до тестирования;

• следует избегать тестирования программы автором;

• необходимо досконально изучать результаты каждого теста;

• необходимо проверять действия программы на неверных данных;

• необходимо проверять программу на неожиданные побочные эффекты на неверных данных.

 

Ручной контроль обычно используют на ранних этапах разработки. Все проектные решения, принятые на том или ином этапе, должны анализироваться с точки зрения их правильности и целесообразности как можно раньше, пока их можно легко пересмотреть.

Поскольку возможность практической проверки подобных решений на ранних этапах разработки отсутствует, большое значение имеет их обсуждение, которое проводят в разных формах.

Различают статический и динамический подходы к ручному контролю. При статическом подходе анализируют структуру, управляющие и информационные связи программы, ее входные и выходные данные. При динамическом - выполняют ручное тестирование., т. е. вручную моделируют процесс выполнения программы на заданных исходных данных.

Исходными данными для таких проверок являются: техническое задание, спецификации, структурная и функциональная схемы программного продукта, схемы отдельных компонентов и т. д., а для более поздних этапов - алгоритмы и тексты программ, а также тестовые наборы.

Доказано, что ручной контроль способствует существенному увеличению производительности и повышению надежности программ и с его помощью можно находить от 30 до 70 % ошибок логического проектирования и кодирования. Следовательно, один или несколько из методов ручного контроля обязательно должны использоваться в каждом программном проекте.

Основными методами ручного контроля являются:

• инспекции исходного текста,

• сквозные просмотры,

• проверка за столом,

• оценки программ.

Инспекции исходного текста.Инспекции исходного текста представляют собой набор процедур и приемов обнаружения ошибок при изучении текста группой специалистов. В эту группу входят: автор программы, проектировщик, специалист по тестированию и координатор -компетентный программист, но не автор программы. Общая процедура инспекции предполагает следующие операции:

• участникам группы заранее выдается листинг программы и спецификация на нее;

• программист рассказывает о логике работы программы и отвечает на вопросы инспекторов;

• программа анализируется по списку вопросов для выявления исторически сложившихся общих ошибок программирования.

Список вопросов для инспекций исходного текста зависит, как от используемого языка программирования, так и от специфики разрабатываемого программного обеспечения. В качестве примера ниже приведен список вопросов, который можно использовать при анализе правильности программ, написанных на языке Pascal.

I. Контроль обращений к данным

• Все ли переменные инициализированы?

• Не превышены ли максимальные (или реальные) размеры массивов и строк?

• Не перепутаны ли строки со столбцами при работе с матрицами?

• Присутствуют ли переменные со сходными именами?

• Используются ли файлы? Если да, то при вводе из файла проверяется ли завершение файла?

• Соответствуют ли типы записываемых и читаемых значений?

• Использованы ли нетипизированные переменные, открытые массивы, динамическая память? Если да, то соответствуют ли типы переменных при «наложении» формата? Не выходят ли индексы за границы массивов?

2. Контроль вычислений

• Правильно ли записаны выражения (порядок следования операторов)?

• Корректно ли выполнены вычисления над неарифметическими переменными?

• Корректно ли выполнены вычисления с переменными различных типов (в том числе с использованием целочисленной арифметики)?

• Возможно ли переполнение разрядной сетки или ситуация машинного нуля?

• Соответствуют ли вычисления заданным требованиям точности?

• Присутствуют ли сравнения переменных различных типов?

3. Контроль передачи управления

• Будут ли корректно завершены циклы?

• Будет ли завершена программа?

• Существуют ли циклы, которые не будут выполняться из-за нарушения условия входа? Корректно ли продолжатся вычисления?

• Существуют ли поисковые циклы? Корректно ли отрабатываются ситуации «элемент найден» и «элемент не найден»?

4. Контроль межмодульных интерфейсов

• Соответствуют ли списки параметров и аргументов по порядку, типу, единицам измерения?

• Не изменяет ли подпрограмма аргументов, которые не должны изменяться?

• Не происходит ли нарушения области действия глобальных и локальных переменных с одинаковыми именами?

Кроме непосредственного обнаружения ошибок, результаты инспекции позволяют программисту увидеть другие сделанные им ошибки, получить возможность оценить свой стиль программирования, выбор алгоритмов и методов тестирования. Инспекция является способом раннего выявления частей программы, с большей вероятностью содержащих ошибки, что позволяет при тестировании уделить внимание именно этим частям.

Сквозные просмотры.Сквозной просмотр, как и инспекция, представляет собой набор способов обнаружения ошибок, осуществляемых группой лиц, просматривающих текст программы. Такой просмотр имеет много общего с процессом инспектирования, но отличается процедурой и методами обнаружения ошибок. Группа по выполнению сквозного контроля состоит из трех-пяти человек: председатель или координатор, секретарь, фиксирующий все ошибки, специалист по тестированию, программист и независимый эксперт. Сквозной просмотр предполагает выполнение следующих процедур:

• участникам группы заранее выдают листинг программы и спецификацию на нее;

• участникам заседания предлагают несколько тестов;

• участники заседания мысленно выполняют каждый тест в соответствии с логикой программы, при этом состояние программы (значения переменных) отслеживается на бумаге или доске;

• при необходимости программисту задают вопросы о логике проектирования и принятых допущениях.

В большинстве сквозных просмотров при выполнении самих тестов находят меньше ошибок, чем при опросе программиста.

Проверка за столом.Исторически данный метод ручного тестирования появился первым, так как он не требует наличия группы специалистов. Это - проверка исходного текста или сквозные просмотры, выполняемые одним человеком, который читает текст программы, проверяет его на наличие возможных ошибок по специальному списку часто встречающихся ошибок и «пропускает» через программу тестовые данные. Исходя из принципов тестирования, проверку за столом должен проводить человек, не являющийся автором программы. Метод наименее результативен, так как проверка представляет собой полностью неупорядоченный процесс, при ней отсутствует обмен мнениями и здоровая конкуренция.

Оценка программ.Этот метод непосредственно не связан с тестированием, но его использование также улучшает качество программирования. Его используют для анонимной оценки программы в терминах ее общего качества, простоты эксплуатации и ясности. Цель метода - обеспечить сравнительно объективную оценку и самооценку программистов. Такая оценка выполняется следующим образом. Выбирается программист, который должен выполнять обязанности администратора процесса. Администратор набирает группу от шести до 20-ти участников, которые должны заниматься разработкой сходных программ. Каждому участнику предлагается представить для рассмотрения две программы, с его точки зрения -наилучшую и наихудшую. Отобранные программы случайным образом распределяются между участниками. Им дают по четыре программы -две наилучшие и две наихудшие, но не говорят, какие программы плохие, а какие - хорошие. Программист просматривает эти программы и заполняет анкету, в которой оценивает качество программ по семибалльной шкале. После этого результаты оценки сверяют, а проверяющий дает общий комментарий и рекомендации по улучшению программ.

2. Стратегии тестирования: структурный подход – методы «белого» ящика, функциональный подход – методы «черного» ящика.

Формирование набора тестов имеет большое значение, поскольку тестирование является одним из наиболее трудоемких этапов (от 30 до 60 % общей трудоемкости) создания программного продукта. Причем доля стоимости тестирования в общей стоимости разработки имеет тенденцию возрастать при увеличении сложности программного обеспечения и повышении требований к их качеству.

Существуют два принципиально различных подхода к формированию тестовых наборов:

структурный и функциональный.

Структурный подход базируется на том, что известка структура тестируемого программного обеспечения, в том числе его алгоритмы («стеклянный ящик»). В этом случае тесты строят так, чтобы проверить правильность реализации заданной логики в коде программы.

Функциональный подход основывается на том, что структура программного обеспечения не известна («черный ящик»). В этом случае тесты строят, опираясь на функциональные спецификации. Этот подход называют также подходом, управляемым данными, так как при его использовании тесты строят на базе различных способов декомпозиции множества данных. Наборы тестов, полученные в соответствии с методами этих подходов, обычно объединяют, обеспечивая всестороннее тестирование программного обеспечения.

3. Структурное тестирование (тестирование маршрутов) – критерии формирования тестовых наборов: покрытие операторов.

Структурное тестирование называют также тестированием по «маршрутам», так как в этом случае тестовые наборы формируют путем анализа маршрутов, предусмотренных алгоритмом. Под маршрутами при этом понимают последовательности операторов программы, которые выполняются при конкретном варианте исходных данных.

В основе структурного тестирования лежит концепция максимально полного тестирования всех маршрутов программы. Так, если алгоритм программы включает ветвление, то при одном наборе исходных данных может быть выполнена последовательность операторов, реализующая действия, которые предусматривает одна ветвь, а при втором - другая.

Соответственно, для программы будут существовать маршруты, различающиеся выбранным при ветвлении вариантом.

Считают, что программа проверена полностью, если с помощью тестов удается осуществить выполнение программы по всем возможным маршрутам передач управления. Однако нетрудно видеть, что даже в программе среднего уровня сложности число неповторяющихся маршрутов может быть очень велико, и, следовательно, полное или исчерпывающее тестирование маршрутов, как правило, невозможно.

Структурный подход к тестированию имеет ряд недостатков. Так тестовые наборы, построенные по данной стратегии:

• не обнаруживают пропущенных маршрутов;

• не обнаруживают ошибок, зависящих от обрабатываемых данных, например, в операторе if

(a - b) < eps - пропуск функции абсолютного значения abs проявится только, если а < Ь;

• не дают гарантии, что программа правильна, например, если вместо сортировки по

убыванию реализована сортировка по возрастанию.

Для формирования тестов программу представляют в виде графа, вершины которого соответствуют операторам программы, а дуги представляют возможные варианты передачи управления.

Ниже приведен текст программы, которая определяет значение х в зависимости от значений параметров процедуры. Алгоритм этой программы представлен на рис. 9.2, а, а соответствующий граф передач управления - на рис. 9.2, 6.

Procedure т (а, b: rеа1; var x: real);

begin

if (a1) and (b=0) then x: =x/a;

if (a=2) or (x>1) then x: =x+1;

end;

Формирование тестовых наборов для тестирования маршрутов может осуществляться по

нескольким критериям:

• покрытие операторов;

• покрытие решений (переходов);

• покрытие условий;

• покрытие решений/условий;

• комбинаторное покрытие условий.

Покрытие операторов.Критерий покрытия операторов подразумевает такой подбор тестов, чтобы каждый оператор программы выполнялся, по крайней мере, один раз. Это необходимое, но недостаточное условие для приемлемого тестирования.

Поясним сказанное примером. Для фрагмента, алгоритм и граф которого представлены на рис. 9.2, можно было бы выполнить каждый оператор один раз, задав в качестве входных данных а = 2, b = О, х = 3. Но при этом из второго условия следует, что переменная х может принимать любое значение, и в некоторых версиях языка Pascal это значение проверяться не будет (!).

Кроме того:

• если при написании программы в первом условии указано: (а > 1) or (b = 0), то ошибка

обнаружена не будет;

• если во втором условии вместо х > 1 записано х > 0, то эта ошибка тоже не будет

обнаружена;

• существует путь 1-2-4-6 (см. рис. 9.2, б), в котором х вообще не меняется и, если здесь есть ошибка, она не будет обнаружена.

Таким образом, хотя при тестировании действительно необходимо задавать исходные данные так, чтобы все операторы программы были выполнены хотя бы один раз, для проверки

программы этого явно недостаточно.

4. Структурное тестирование (тестирование маршрутов) – критерии формирования тестовых наборов: покрытие решений (переходов).

Покрытие решений (переходов).Для реализации этого критерия необходимо такое количество и состав тестов, чтобы результат проверки каждого условия (т.е. решение) принимал значения «истина» или «ложь», по крайней мере, один раз.

Нетрудно видеть, что критерий покрытия решений удовлетворяет критерию покрытия

операторов, но является более «сильным».

Программу, алгоритм которой представлен на рис. 9.2, а, можно протестировать по методу покрытия решений двумя тестами, покрывающими либо пути: 1-2-4-6, 1-2-3-4-5-6, либо пути:

1-2-3-4-6, 1-2-4-5-6, например:

а = 3, Ь = 0, х = 3— путь 1-2-3-4-5-6;

а = 2, b = 1, х = I — путь 1-2-4-6.

Однако путь, где х не меняется, будет проверен с вероятностью 50 %: если во втором условии вместо условия х > 1 записано х < 1, то этими двумя тестами ошибка обнаружена не будет.

5. Структурное тестирование (тестирование маршрутов) – критерии формирования тестовых наборов: покрытие условий.

Покрытие условий.Критерий покрытия условий является еще более «сильным» по сравнению с покрытием решений (переходов). В этом случае формируют некоторое количество тестов, достаточное для того, чтобы все возможные результаты каждого условия в решении были выполнены, по крайней мере, один раз.

Однако, как и в случае покрытия решений, этот критерий не всегда приводит к выполнению каждого оператора, по крайней мере, один раз. К критерию требуется дополнение, заключающееся в том, что каждой точке входа управление должно быть передано, по крайней

мере, один раз.

Программа, алгоритм которой представлен на рис. 9.2, а, проверяет четыре условия:

1) а>1; 2) Ь = 0; 3) а = 2; 4) х>1.

Необходимо реализовать все возможные ситуации:

а>1,а ≥ 1, b = 0, b≠0, а = 2, а ≠ 2, х>1,х ≤ 1.

Тесты, удовлетворяющие этому условию:

а = 2, Ь = 0, х = 4 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - да, 3 - да, 4 - да;

а = 1, b = 1, х = 1 — путь 1-2-4-6, условия: 1 - нет, 2 - нет, 3 - нет, 4 - нет.

Критерий покрытия условий часто удовлетворяет критерию покрытия решений, но не всегда.

Тесты критерия покрытия условий для ранее рассмотренных примеров покрывают результаты

всех решений, но это случайное совпадение. Например, тесты:

а= 1, b = 0, х = 3 — путь 1-2-3-6, условия: 1 - нет, 2 - да, 3 - нет, 4 - да;

а = 2, b = 1, х = 1 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - нет, 3 - да, 4 - нет

покрывают результаты всех условий, но только два из четырех результатов решений: не выполняется результат «истина» первого решения и результат «ложь» второго.

Основной недостаток метода - недостаточная чувствительность к ошибкам в логических

выражениях.

6. Структурное тестирование (тестирование маршрутов) – критерии формирования тестовых наборов: покрытие решений/условий.

Покрытие решений/условий.Согласно этому методу тесты должны составляться так, чтобы, по крайней мере, один раз выполнились все возможные результаты каждого условия и все результаты каждого решения, и каждому оператору управление передавалось, по крайней мере,

один раз.

Анализ, проведенный выше, показывает, что этому критерию удовлетворяют тесты:

а-2, b = 0, х = 4 — путь 1-2-3-4-5-6, условия: 1 - да, 2 - да, 3 - да, 4 - да;

а = 1 , Ь = 1 , х = 1 — путь 1-2-4-6, условия; 1 - нет, 2 - нет, 3 - нет, 4 - нет.

 

7. Структурное тестирование (тестирование маршрутов) – критерии формирования тестовых наборов: комбинаторное покрытие условий.

Комбинаторное покрытие условий.Этот критерий требует создания такого множества тестов, чтобы все возможные комбинации результатов условий в каждом решении и все операторы выполнялись, по крайней мере, один раз.

Для программы, алгоритм которой представлен на рис. 9.1, необходимо покрыть тестами восемь комбинаций:

1)а >1, b = 0; 5) а = 2, х> 1;

2)а >1, b ≠0; 6) а = 2, х ≤ 1;

3)а≤ 1,b = 0; 7) а ≠ 2, х> 1;

4)а≤ 1; b ≠0; 8) а ≠ 2, х ≤ 1.

Эти комбинации можно проверить четырьмя тестами:

а = 2, b = 0, х = 4 — проверяет комбинации (1), (5);

а = 2, b = 1 , х = 1 — проверяет комбинации (2), (6);

а = 1 , b = 0, х = 2 — проверяет комбинации (3), (7);

а = 1 , b = 1 , х = 1 — проверяет комбинации (4), (8).

В данном случае то, что четырем тестам соответствует четыре пути, является совпадением. Представленные тесты не покрывают всех путей, например, acd. Поэтому иногда необходима реализация восьми тестов.

Таким образом, для программ, содержащих только одно условие на каждое решение, минимальным является набор тестов, который проверяет все результаты каждого решения и передает управление каждому оператору, по крайней мере, один раз.

Для программ, содержащих вычисления, каждое из которых требует проверки более чем одного условия, минимальный набор тестов должен:

• генерировать все возможные комбинации результатов проверок условий для каждого

вычисления;

• передавать управление каждому оператору, по крайней мере, один раз.

Термин «возможных» употреблен здесь потому, что некоторые комбинации условий могут быть нереализуемы. Например, для комбинации k<0 и к>40 задать k невозможно.

8. Функциональное тестирование (тестирование с управлением по данным) – критерии формирования тестовых наборов: эквивалентное разбиение.

Одним из способов проверки программ является тестирование с управлением по данным или по принципу «черного ящика». В этом случае программа рассматривается как «черный ящик», и целью тестирования является выяснение обстоятельств, в которых поведение программы не соответствует спецификации.

Для обнаружения всех ошибок в программе, используя управление по данным, необходимо выполнить исчерпывающее тестирование, т. е. тестирование на всех возможных наборах данных. Для тех же программ, где исполнение команды зависит от предшествующих ей событий, необходимо проверить и все возможные последовательности. Очевидно, что проведение исчерпывающего тестирования для подавляющего большинства случаев невозможно. Поэтому обычно выполняют «разумное» или «приемлемое» тестирование, которое ограничивается прогонами программы на небольшом подмножестве всех возможных входных данных. Этот вариант не дает гарантии отсутствия отклонений от спецификаций.

Правильно выбранный тест должен уменьшать, причем более чем на единицу, число других тестов, которые должны быть разработаны для обеспечения требуемого качества программного обеспечения.

При функциональном тестировании различают следующие методы формирования тестовых

наборов:

• эквивалентное разбиение;

• анализ граничных значений;

• анализ причинно-следственных связей;

• предположение об ошибке.

Эквивалентное разбиение.Метод эквивалентного разбиения заключается в следующем. Область всех возможных наборов входных данных программы по каждому параметру разбивают на конечное число групп - классов эквивалентности. Наборы данных такого класса объединяют по принципу обнаружения одних и тех же ошибок: если набор какого-либо класса обнаруживает некоторую ошибку, то предполагается, что все другие тесты этого класса эквивалентности тоже обнаружат эту ошибку и наоборот.

Разработку тестов методом эквивалентного разбиения осуществляют в два этапа: на первом выделяют классы эквивалентности, а на втором - формируют тесты. Выделение классов эквивалентности является эвристическим процессом, однако целесообразным считают выделять в отдельные классы эквивалентности наборы, содержащие допустимые и недопустимые значения некоторого параметра. При этом существует ряд правил:

• если некоторый параметр х может принимать значения в интервале [1, 999], то выделяют один правильный класс 1 ≤ х ≤ 999 и два неправильных: х < I и х>999;

• если входное условие определяет диапазон значений порядкового типа, например, «в автомобиле могут ехать от одного до шести человек», то определяется один правильный класс эквивалентности и два неправильных: ни одного и более шести человек;

• если входное условие описывает множество входных значений и есть основания полагать, что каждое значение программист трактует особо, например, «типы графических файлов: bmp, jpeg, vsd», то определяют правильный класс эквивалентности для каждого значения и один неправильный класс, например, txt;

• если входное условие описывает ситуацию «должно быть», например, «первым символом идентификатора должна быть буква», то определяется один правильный класс эквивалентности (первый символ -буква) и один неправильный (первый символ - не буква);

• если есть основание считать, что различные элементы класса эквивалентности трактуются программой неодинаково, то данный класс разбивается на меньшие классы эквивалентности.

Таким образом, классы эквивалентности выделяют, перебирая ограничения, установленные для каждого входного значения в техническом задании или при уточнении спецификации. Каждое ограничение разбивают на две или более групп. При этом используют специальные бланки - таблицы классов эквивалентности:

Ограничение на значение параметра Правильные классы эквивалентности Неправильные классы эквивалентности
     

Правильные классы включают правильные данные, неправильные классы – неправильные данные. Для правильных и неправильных классов тесты проектируют отдельно. При построении тестов правильных классов учитывают, что каждый тест должен проверять по возможности максимальное количество различных входных условий. Такой подход позволяет минимизировать общее число необходимых тестов. Для каждого неправильного класса эквивалентности формируют свой тест. Последнее обусловлено тем, что определенные проверки с ошибочными входами скрывают или заменяют другие проверки с ошибочными входами.

Метод не позволяет проверить результаты, получаемые при различных сочетаниях данных. Для построения тестов, проверяющих сочетания данных, применяют методы, использующие булеву алгебру.

9. Функциональное тестирование (тестирование с управлением по данным) – критерии формирования тестовых наборов: анализ граничных значений.

Анализ граничных значений.Граничные значения - это значения на границах классов эквивалентности входных значений или около них. Анализ показывает, что в этих местах резко увеличивается возможность обнаружения ошибок. Например, если в программе анализа вида треугольника было записано А + В ≥ С вместо А + В > С, то задание граничных значений приведет к ошибке: линия будет отнесена к одному из видов треугольника.

Применение метода анализа граничных значений требует определенной степени творчества и специализации в рассматриваемой проблеме. Тем не менее, существует несколько общих правил для применения этого метода:

• если входное условие описывает область значений, то следует построить тесты для границ области и тесты с неправильными входными данными для ситуаций незначительного выхода за границы области, например, если описана область [-1.0, +1.0], то должны быть сгенерированы тесты: -1.0, + 1.0,-1.001 и+1.001;

• если входное условие удовлетворяет дискретному ряду значений, то следует построить тесты для минимального и максимального значений и тесты, содержащие значения большие и меньшие этих двух значений, например, если входной файл может содержать от 1 до 255 записей, то следует проверить О, 1, 255 и 256 записей;

• если существуют ограничения выходных значений, то целесообразно аналогично

тестировать и их: конечно не всегда можно получить результат вне выходной области, но тем не менее стоит рассмотреть эту возможность;

• если некоторое входное или выходное значение программы является упорядоченным множеством, например, это последовательный файл, линейный список или таблица, то следует сосредоточить внимание на первом и последнем элементах этого множества.

Помимо указанных граничных значений, целесообразно поискать другие. Анализ граничных значений, если он применен правильно, является одним из наиболее полезных методов проектирования тестов. Однако следует помнить, что граничные значения могут быть едва уловимы и определение их связано с большими трудностями, что является недостатком этого метода.

Метод не позволяет проверить результаты, получаемые при различных сочетаниях данных. Для построения тестов, проверяющих сочетания данных, применяют методы, использующие булеву алгебру.

10. Функциональное тестирование (тестирование с управлением по данным) – критерии формирования тестовых наборов: анализ причинно-следственных связей.

Анализ причинно-следственных связей.Анализ причинно-следственных связей позволяет

системно выбирать высокорезультативные тесты. Метод использует алгебру логики и оперирует понятиями «причина» и «следствие». Причиной в данном случае называют отдельное входное условие или класс эквивалентности. Следствием - выходное условие или преобразование системы. Идея метода заключается в отнесении всех следствий к причинам, т. е. в уточнении причинно-следственных связей. Данный метод дает полезный побочный эффект, позволяя обнаруживать неполноту и неоднозначность исходных спецификаций.

Построение тестов осуществляют в несколько этапов. Сначала, поскольку таблицы причинно-следственных связей при применении метода к большим спецификациям становятся громоздкими, спецификации разбивают на «рабочие» участки, стараясь по возможности выделять в отдельные таблицы независимые группы причинно-следственных связей. Затем в спецификации определяют множество причин и следствий. Далее на основе анализа семантического (смыслового) содержания спецификации строят таблицу истинности, в которой каждой возможной комбинации причин ставится в соответствие следствие. При этом целесообразно истину обозначать «I», ложь - «О», а для обозначения безразличных состояний условий применять обозначение «X», которое предполагает произвольное значение условия (0 или 1). Таблицу сопровождают примечаниями, задающими ограничения и описывающими комбинации причин и/или следствий. которые являются невозможными из-за синтаксических или внешних ограничений. При необходимости аналогично строится таблица истинности для класса эквивалентности.

И, наконец, каждую строку таблицы преобразуют в тест. При этом рекомендуется по

возможности совмещать тесты из независимых таблиц. Данный метод позволяет строить высокорезультативные тесты и обнаруживать неполноту и неоднозначность исходных спецификаций. Его недостатком является неадекватное исследование граничных значений.

11. Функциональное тестирование (тестирование с управлением по данным) – критерии формирования тестовых наборов: предположение об ошибке.

Предположение об ошибке.Часто программист с большим опытом находит ошибки, «не применяя никаких методов». На самом деле он подсознательно использует метод «предположение об ошибке».

Процедура метода предположения об ошибке в значительной степени основана на интуиции.

Основная его идея заключается в том, чтобы перечислить в некотором списке возможные ошибки или ситуации, в которых они могут появиться, а затем на основе этого списка составить тесты. Другими словами, требуется перечислить те особые случаи, которые могут быть не учтены при проектировании.

12. Тестирование модулей: восходящие, нисходящие, комбинированное, модули-заглушки, тестирование специалистами-тесторами, документирование тестирования, регрессивное тестирование.

При тестировании модулей программного обеспечения, так же, как при проектировании и кодировании возможно применение как восходящего, так и нисходящего подходов.

Восходящее тестирование.Восходящий подход предполагает, что каждый модуль тестируют отдельно на соответствие имеющимся спецификациям на него, затем собирают оттестированные модули в модули более высокой степени интеграции и тестируют их. При этом проверяют межмодульные интерфейсы, используемые для подключения модулей более низкого уровня иерархии. И так далее, пока не будет собран весь программный продукт (рис. 9.3).

Такой подход обеспечивает полностью автономное тестирование, для которого просто генерировать тестовые последовательности, которые передаются в модуль напрямую. Однако он имеет и существенные недостатки. Во-первых, при восходящем тестировании так же, как при восходящем проектировании, серьезные ошибки в спецификациях, алгоритмах и интерфейсе могут быть обнаружены только на завершающей стадии работы над проектом. Во-вторых, для того, чтобы тестировать модули нижних уровней, необходимо разработать специальные тестирующие программы, которые обеспечивают вызов интересующих нас модулей с необходимыми параметрами. Причем эти тестирующие программы также могут содержать ошибки.

Нисходящее тестирование.Нисходящее тестирование органически связано с нисходящим проектированием и разработкой; как только проектирование какого-либо модуля заканчивается, его кодируют и передают на тестирование.

В этом случае автономно тестируется только основной модуль. При его тестировании все вызываемые им модули заменяют модулями, которые в той или иной степени имитируют поведение вызываемых модулей (рис. 9.4). Такие модули принято называть «заглушками». В отличие от тестирующих программ заглушки очень просты, например, они могут просто фиксировать, что им передано управление. Часто заглушки просто возвращают какие-либо фиксированные данные.

Как только тестирование основного модуля завершено, к нему подключают модули, непосредственно им вызываемые, и необходимые заглушки, а затем проводят их совместное тестирование. Далее последовательно подключают следующие модули, пока не будет собрана

вся система.

Основной недостаток нисходящего тестирования - отсутствие автономного тестирования модулей. Поскольку модуль получает данные не непосредственно, а через вызывающий модуль, то гораздо сложнее обеспечить его «достаточное» тестирование.

Основным достоинством данного метода является ранняя проверка основных решений и качественное многократное тестирование сопряжения модулей в контексте программного обеспечения. При нисходящем тестировании есть возможность согласования с заказчиком внешнего вида (интерфейса) программного обеспечения.

Комбинированный подход.Чаще всего применяют комбинированный подход: модули верхних уровней тестируют нисходящим способом, а модули нижних уровней - восходящим. Этот способ позволяет с одной стороны начать с тестирования интерфейса, с другой - обеспечивает качественное автономное тестирование модулей низших уровней.

Тестирование программного обеспечения специалистами.Согласно основным принципам нежелательно тестирование программного обеспечения его автором, поэтому эту работу, как правило, выполняют другие программисты, желательно - специалисты в этой области. Задачей специалиста по тестированию является обнаружение максимального количества несоответствий тестируемого модуля и спецификаций на него. Для выполнения этой задачи специалист по тестированию формирует тесты, используя как структурный, так и функциональный подходы, обеспечивая всестороннее тестирование.

Каждое отклонение от спецификации обязательно документируют, заполняя специальный протокол (рис. 9.5). Наиболее интересными полями протокола являются тип проблемы и ее описание.

В поле тип проблемы указывают один из вариантов:

1 - ошибка кодирования - программа ведет себя не так, как следует из общепринятых представлений, например, 2 + 2 = 5 - на что разработчик может выдать резолюцию «соответствует проекту»;

2 - ошибка проектирования — программа ведет себя в соответствии с проектом, но специалист по тестированию не согласен с данным решением в проекте - на что разработчик может отреагировать, наложив резолюцию «не согласен с предложением»;

3 - предложение -предложение по улучшению проекта;

4 - расхождение с документацией - обнаружено, что программа ведет себя не так, как указано в документации;

5 - взаимодействие с аппаратурой - обнаружены проблемы при использовании определенного вида аппаратуры;

6 - вопрос - программа делает что-то не совсем понятное.

Описание проблемы должно быть коротким и понятным, например:

«Система не запоминает настройки принтера, выполняемые в окне настройки». Если программист исправляет ошибку, то тестирование повторяют сначала, так как при исправлении ошибки программист может внести в программу новые ошибки. Такое тестирование называют «регрессионным».

13. Комплексное тестирование, критерии завершения тестирования, оценочное-системное тестирование.

Комплексное тестирование.Особенностью комплексного тестирования является то, что структурное тестирование для него практически не применимо. В основном на данной стадии используют тесты, построенные по методам эквивалентных классов, граничных условий и предположении об ошибках.

Критерии завершения тестирования и отладки.Одним из самых сложных является вопрос о том, когда следует завершать тестирование, поскольку невозможно гарантировать, что в разрабатываемом программном обеспечении не осталось ошибок.

Все критерии можно разделить на три группы:

• основанные на методологиях проектирования тестов – определенное количество тестов, полученных по методам анализа причинно-следственных связей, анализа граничных значений и предположения об ошибке, перестают выявлять ошибки;

• основанные на оценке возможного количества ошибок - возможное количество ошибок оценивают экспертно, или по специальным методикам, а затем завершают тестирование при нахождении примерно 93-95% ошибок;

• основанные на исследовании результатов тестирования - строят график зависимости количества обнаруженных ошибок от времени тестирования, если он напоминает график, представленный на рис. 9.6, то тестирование можно завершать.

Часто тестирование завершают потому, что закончилось время, отведенное на выполнение данного этапа. В этом случае тестирование сворачивают, обходясь минимальным вариантом.

Минимальное тестирование предполагает:

• тестирование граничных значений;

• тщательную проверку руководства;

• тестирование минимальных конфигураций технических средств;

• тестирование возможности редактирования команд и повторения их в любой последовательности;

• тестирование устойчивости к ошибкам пользователя.

Часть ошибок при этом остаются неисправленными «отложенными» до выпуска следующей версии.

Оценочное тестирование

Оценочное тестирование, которое также называют «тестированием системы в целом», включает следующие виды: • тестирование удобства использования - последовательная проверка соответствия… • тестирование на предельных объемах - проверка работоспособности программы на максимально больших объемах данных,…

Задачи службы сопровождения программного изделия

1. Сбор и анализ поступающих от пользователей сведений об обнаруженных ошибках, замечаний и предложений по совершенст­вованию и изменению… 2. Исправление ошибок в программах, выдающих результаты, не отвечающие… 3. Модернизация программного изделия путем расширения функциональных возможностей или улучшения эксплуатационных…

Идентификация интерфейса

Принято, чтобы символьные имена СОМ-интерфейсов начинались с буквы I (от Interface). Например, упомянутый нами интерфейс для работы с файлами должен… Программное имя любого интерфейса образуется с помощью глобально уникального… Уникальность во времени достигается за счет включения в каждый GUID метки времени, указателя момента создания.…

Описание интерфейса

[ object. uuid(E7CDODOO-1827-11CF-9946-444553540000) ] interface IРаботаСФайлами: IUnknown {

Реализация интерфейса

Структуру интерфейса IРаботаСФайлами, соответствующую двоичному формату. Внешний указатель на интерфейс (указатель клиента) ссылается на внутренний указатель объекта СОМ. Внутренний указатель…

Unknown — базовый интерфейс COM

Интерфейс lUnknown обеспечивает минимальное «снаряжение» каждого объекта СОМ. Он содержит три операции и предоставляет любому объекту СОМ две функциональные возможности:

-операция Querylnterface() позволяет клиенту получить указатель на любой интерфейс объекта (из другого указателя интерфейса);

-операции AddRef() и Release() обеспечивают механизм управления временем жизни объекта.

Серверы СОМ-объектов

-Сервер «в процессе» (in-process) — объекты находятся в динамически подключаемой библиотеке и, следовательно, выполняются в том же процессе, что и… -Локальный сервер (out-process) — объекты находятся в отдельном процессе,… -Удаленный сервер — объекты находятся в DLL или в отдельном процессе, которые расположены на удаленном от клиента…

Преимущества COM

В качестве кратких выводов отметим основные преимущества СОМ.

1) СОМ обеспечивает удобный способ фиксации услуг, предоставляемых разными фрагментами ПО.

2) Общий подход к созданию всех типов программных услуг в СОМ упрощает проблемы разработки.

3) СОМ безразличен язык программирования, на котором пишутся СОМ-объекты и клиенты.

СОМ обеспечивает эффективное управление изменением программ — замену текущей версии компонента на новую версию с дополнительными возможностями.

27. Работа с COM-объектами: создание COM-объектов, повторное использование COM-объектов.

При работе с СОМ-объектами приходится их создавать, повторно использовать, размещать в других процессах, описывать в библиотеке операционной системы. Рассмотрим каждый из этих вопросов.

Создание СОМ-объектов

-содержит функции, предлагающие базовые услуги объектам и их клиентам; -предоставляет клиентам возможность запуска серверов СОМ-объектов. Доступ к услугам библиотеки СОМ выполняется с помощью вызовов обычных функций. Чаще всего имена функций библиотеки СОМ…

Повторное использование СОМ-объектов

Применяются следующие термины: -внутренний объект — это базовый объект; -внешний объект — это объект, повторно использующий услуги внутреннего объекта.

Маршалинг

Посредник — СОМ-объект, размещенный в клиентском процессе и предоставляющий клиенту те же интерфейсы, что и запрашиваемый объект. Запрос клиентом… Посредник принимает параметры, переданные клиентом, и упаковывает их для…

IDL-описаниеи библиотека типа

Библиотека типа определяет важные для клиента характеристики СОМ-объекта: имя его класса, поддерживаемые интерфейсы, имена и адреса элементов… Рассмотрим пример приведенного ниже IDL-описания объекта для работы с файлами.… -----------1-я часть

– Конец работы –

Используемые теги: Автономное, Тестирование, компонентов, программного, обеспечения0.074

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Автономное тестирование компонентов программного обеспечения

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Программное обеспечение можно разделить на две группы: системное программное обеспечение СПО и прикладное программное обеспечение ППО
Программное обеспечение это общий термин для обозначения quot неосязаемых quot в отличие от физических составных частей компьютерной системы... Программное обеспечение можно разделить на две группы системное программное... СПО управляет ресурсами компьютерной системы и позволяет пользователям программировать в более выразительных языках...

Введение. Состав вычислительной системы, программного обеспечения и других программных обеспечений
КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ... quot Операционные системы и офисные приложения quot для студентов направления В...

Программное обеспечение ПК/Построение диаграмм в текстовом редакторе Word/Классификация системного программного обеспечения
Без программного обеспечения компьютер не сможет выполнять задачи, которые мы обычно связываем с компьютерами. Функции программного обеспечения следующие: 1. управлять компьютерными… Синонимом слову «программа» является термин «приложение» (application). Для того, чтобы программа была выполнена, она…

Лекция 4 История развития вычислительной техники. Классификация компьютеров. Состав вычислительной системы. Аппаратное и программное обеспечение. Классификация служебных и прикладных программных средств
Классификация компьютеров... По назначению... суперкомпьютеры серверы встроенные компьютеры микропроцессоры...

Кризис программного обеспечения ПО. Проблемы и цели программной инженерии
Недостатки... Негибкое разбиение процесса создания ПО на отдельные фиксированные этапы... В этой модели определяющие систему в целом решения принимаются на ранних этапах и затем их трудно отменить или...

Разработка методики программного тестирования цифровых устройств с помощью программного пакета Design Center
Целью данной работы является разработка методики программного тестирования цифровых устройств. Прилагаются чертежи структурных электрических схем… Затраты на тестирование сложных интегральных схем с привлечением… В общем случае при тестировании на математической модели или реальном образце обнаруживаются неисправности…

Лекции 1.ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ. 2 ЛЕКЦИИ 2. МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ. СИСТЕМЫ СЧИСЛЕНИЯ. 12 ЛЕКЦИЯ 3. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ ЭВМ. 20 ЛЕКЦИЯ 4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ КОМПЬЮТЕРОВ.. 49 Широко распространён также англоязычный вар
gl ОГЛАВЛЕНИЕ... Лекции ОСНОВНЫЕ ПОНЯТИЯ И КАТЕГОРИЯ ИНФОРМАТИКИ... ЛЕКЦИИ МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ СИСТЕМЫ СЧИСЛЕНИЯ...

Тема: Информационные ресурсы общества. Образовательные информационные ресурсы. Работа с программным обеспечением
Тема Информационные ресурсы общества Образовательные информационные ресурсы Работа с программным обеспечением... Цель научиться пользоваться образовательными информационными ресурсами искать...

Программное обеспечение сетей ЭВМ
Получение и анализ информации в этом случае должны происходить со скоростью выработки параметрических данных в реальном масш¬табе времени. При этом, в принципе, не существует объектов, исключающих непосредственное или… Прогресс в развитии микропроцессорной техники сделал ее доступной массовому потребителю, а высокая надежность,…

«Технология разработки программного обеспечения»
На сайте allrefs.net читайте: «Технология разработки программного обеспечения»...

0.032
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам