рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

P-n-переход и его свойства

P-n-переход и его свойства - раздел Философия, ЭЛЕКТРОТЕХНИКА и ЭЛЕКТРОНИКА Действие Полупроводниковых Приборов Основано На Использовании Свойств Полупро...

Действие полупроводниковых приборов основано на использовании свойств полупроводников. Полупроводники занимают промежуточное положение между проводниками и диэлектриками. К полупроводникам относятся элементы IV группы Периодической системы элементов Д.И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники – Ge (германий) и Si (кремний).

Чистые полупроводники кристаллизуются в виде решетки, рис. 75, а. Каждая валентная связь содержит два электрона, оболочка атома имеет восемь электронов, и атом находится в состоянии равновесия. Чтобы «вырвать» электрон в зону проводимости, необходимо затратить большую энергию.

Чистые полупроводники обладают высоким удельным сопротивлением (от 0,65 Ом×м до 108 Ом×м). Для снижения высокого удельного сопротивления чистых полупроводников в них вводят примеси, такой процесс называется легированием, а соответствующие полупроводниковые материалы легированными. В качестве легирующих примесей применяют элементы III и V групп Периодической системы элементов Д.И. Менделеева.

 
 

 

 


Элементы III группы имеют три валентных электрона, поэтому при образовании валентных связей одна связь оказывается только с одним электроном, рис. 75, б. Такие полупроводники обладают дырочной электропроводностью, так как в них основными носителями заряда являются дырки. Под дыркой понимается место незанятое электроном, которому присваивается положительный заряд. Такие полупроводники также называются полупроводниками p-типа, а примесь, благодаря которой в полупроводнике оказался недостаток электронов, называется акцепторной.

Элементы V группы имеют пять валентных электронов, поэтому при образовании валентных связей один электрон оказывается лишним, рис. 75, в. Такие полупроводники обладают электронной электропроводностью, так как в них основными носителями заряда являются электроны. Они называются полупроводниками n-типа, а примесь, благодаря которой в полупроводнике оказался избыток электронов, называется донорной.

Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей. При концентрации примесей 1020 ¸ 1021 на 1 см3 вещества оно может быть снижено до 5×10-6 Ом×м для германия и 5×10-5 Ом×м для кремния.

Основное значение для работы полупроводниковых приборов имеет электронно-дырочный переход, которыйназывают p-n-переходом (область на границе двух полупроводников, один из которых имеет дырочную, а другой – электронную электропроводность).

На практике p-n-переход получают введением в полупроводник дополнительной легирующей примеси. Например, при введении донорной примеси в определенную часть полупроводника p-типа в нем образуется область полупроводника n-типа, граничащая с полупроводником p-типа.

Схематически образование p-n-перехода при соприкосновении двух полупроводников с различными типами электропроводности показано на рис. 76. До соприкосновения в обоих полупроводниках электроны, дырки, ионы были распределены равномерно, рис. 76, а.

При соприкосновении полупроводников в пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника n-типа занимают свободные уровни в валентной зоне полупроводника p-типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким удельным сопротивлением, - так называемый запирающий слой рис. 76, б. Толщина запирающего слоя l обычно не превышает нескольких микрометров.

 
 

 

 


Рис. 76. Образование p-n-перехода: распределение носителей заряда в полупроводниках с различными типами электропроводности до соприкосновения (а); после соприкосновения (б)

 

Расширению запирающего слоя препятствуют неподвижные ионы донорных и акцепторных примесей, которые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов Δjк на границе полупроводников, рис. 77. Возникшая разность потенциалов создает в запирающем слое электрическое поле напряженностью Eзап, препятствующее как переходу электронов из полупроводника n-типа в полупроводник p-типа, так и переходу дырок в полупроводник n-типа. В тоже время электроны могут свободно двигаться из полупроводника p-типа в полупроводник n-типа, как и дырки из полупроводника n-типа в полупроводник p-типа. Таким образом, контактная разность потенциалов препятствует движению основных носителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через p-n-переход неосновных носителей (дрейфовый ток Iдр) происходит снижение контактной разности потенциалов, что позволяет некоторой части основных носителей, обладающих достаточной энергией, преодолеть потенциальный барьер, обусловленный контактной разностью потенциалов. Появляется диффузионный ток Iдиф, который направлен навстречу дрейфовому току Iдр, то есть возникает динамическое равновесие, при котором Iдр= Iдиф.

 
 

 


Если к p-n-переходу приложить внешнее напряжение Uобр, которое создает в запирающем слое электрическое поле напряженностью Евн, совпадающее по направлению с полем неподвижных ионов напряженностью Езап, рис. 78, а, то это приведет к расширению запирающего слоя, так как носители заряда уйдут от контактной зоны. При этом сопротивление p-n-перехода велико, ток через него мал, так как обусловлен движением неосновных носителей заряда. В этом случае ток называют обратным Iобр, а p-n-переход – закрытым.

При противоположной полярности источника напряжения, рис. 78, б внешнее поле направлено навстречу полю двойного электрического слоя, толщина запирающего слоя уменьшается. Сопротивление p-n-перехода резко снижается и возникает сравнительно большой ток. В этом случае ток называют прямым Iпр, а p-n-переход – открытым.

На рис. 79 показана вольт-амперная характеристика p-n-перехода. Пробой p-n-перехода связан с тем, что при движении через p-n-переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупроводника. В переходе начинается лавинообразное размножение носителей заряда, что приводит к резкому увеличению обратного тока через p-n-переход при почти неизменном обратном напряжении. Этот вид электрического пробоя называют лавинным. Обычно он развивается в относительно широких p-n-переходах, которые образуются в слаболегированных полупроводниках.

 
 

 

 
 

 


В сильнолегированных полупроводниках ширина запирающего слоя меньше, что препятствует возникновению лавинного пробоя, так как движущиеся носители не приобретают энергии, достаточной для ударной ионизации. В таких полупроводниках возможно возникновение эффекта Зенера, когда при достижении критической напряженности электрического поля в p-n-переходе за счет энергии поля появляются пары носителей электрон – дырка, и существенно возрастает обратный ток p-n-перехода.

для электрического пробоя характерна обратимость, заключающаяся в том, что первоначальные свойства p-n-перехода полностью восстанавливаются, если снизить напряжение на p-n-переходе. Благодаря этому электрический пробой используют в качестве рабочего режима в полупроводниковых диодах.

Если температура p-n-перехода возрастает в результате его нагрева обратным током и недостаточного теплоотвода, то усиливается процесс генерации пар носителей заряда. Это приводит к дальнейшему увеличению обратного тока и нагреву p-n-перехода, что может вызвать разрушение перехода. Такой процесс называют тепловым пробоем. Тепловой пробой разрушает p-n-переход.

В сильнолегированных полупроводниках может возникать квантово-механический туннельный эффект, который состоит в том, что при очень малой толщине запирающего слоя основные носители могут преодолевать запирающий слой без изменения энергии, что приводит к возрастанию тока на этих участках.

Закрытый p-n-переход обладает электрической емкостью, которая зависит от его площади и ширины, а также от диэлектрической проницаемости запирающего слоя.

Свойства p-n-перехода широко используются в полупроводниковых приборах.

 

– Конец работы –

Эта тема принадлежит разделу:

ЭЛЕКТРОТЕХНИКА и ЭЛЕКТРОНИКА

Федеральное государственное бюджетное образовательное учреждение... высшего профессионального образования... Национальный минерально сырьевой университет Горный...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: P-n-переход и его свойства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Порядок расчета
1. Зададимся условными направлениями токов в ветвях (номер введем в соответствии с порядковым номером сопротивлений). 2.Составим уравнения для каждого из независимых узлов по первому закон

Метод узловых потенциалов
Этот метод основан на составлении уравнений по первому закону Кирхгофа, схема рис.5 -I1 + I2 - I3 = 0

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ однофазного ПЕРЕМЕННОГО ТОКА
Переменным током называется ток, периодически меняющийся по величине и направлению: I0(t) = I0(t + кT). Такой режим может быть опис

Контрольные задачи
1. Определить напряжение на индуктивности, если ток катушки Z

ЦЕПИ С ИНДУКТИВНЫМИ СВЯЗЯМИ
Индуктивно связанными элементами электрической цепи переменного тока называются индуктивные катушки, в которых кроме ЭДС самоиндукции создается ЭДС от действия переменного магн

Последовательное соединение катушек
Для цепи с последовательным соединением, при согласном включении рис.26:    

Параллельное соединение катушек
При параллельном соединение катушек, рис 27.        

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ
      t В электрических цепя

Потокосцепление скачком измениться не может
, следовательно, по 1-му закону коммутации в первый момент

Контрольные задачи
1.В симметричной электрической цепи при соединении звездой Z = 5еj30B Ом ;

Заземленная нейтраль
Ток однофазного короткого замыкания в сети с заземленной нейтралью достаточно велик и сопровождается возникновением дуги. Это делает невозможным ис­пользование таких сетей в угольных шахтах и помещ

Изолированная нейтраль
При однофазном замыкании на землю в сети с изолированной нейтралью ток короткого замыкания определяется сопротивлением изоляции, которое, в свою очередь, определяется активным и емкостным сопротивл

Защитное заземление
Защитным заземлением называется преднамеренное соеди­нение с землей всех нетоковедущих металлических частей электро­установки не находящихся под напряжением, но которые могут ока­заться под напряже

Защитное зануление. Принцип действия
Занулением называется преднамеренное электрическое со­единение металлических нетоковедущих частей электроустановок с нулевым, многократно заземленным проводом, рис.49.

Основные величины, характеризующие магнитное поле, и ферромагнитные материалы
В различных областях техники широкое применения находят электромагнитные механизмы и устройства, которые преобразуют электрическую энергию в механическую. Они также создают магнитные поля с необход

Закон полного тока
Расчет магнитной цепи производится на основании закона полного тока.

Феррорезонансные явления в цепи переменного тока
Нелинейность кривой намагничивания обусловливает нелинейность индуктивного сопротивления катушки на магнитном сердечнике, для которой индуктивное сопротивление будет во много раз больше, чем без се

ТРАНСФОРМАТОРЫ
  Трансформаторы - это электротехнические устройства, предназначенные для преобразования тока одного уровня напряжения в переменный ток другого уровня напряжения той же частоты. Т.е.

Однофазный трансформатор напряжения
Рассмотрим принцип работы трансформатора на примере однофазного трансформатора схематически представляющего собой магнитопровод с двумя обмотками w1 и w2 (рис.56

Асинхронный двигатель
Асинхронный двигатель наиболее распространен в качестве электропривода различных механизмов благодаря своей простоте и надежности. Более 60 % всей вырабатываемой в мире энергии преобразуется в меха

Синхронная машина
  Синхронная машина переменного тока используется с механизмами, требующими постоянного рабочего момента. К таким механизмам относятся компрессоры, вентиляторы, насосы и т.д.

Машина постоянного тока
Электрические машины постоянного тока предназначены для преобразования электрической энергии, как в механическую, так и обратно. Поэтому в первом случае они называются двигателем, а во втором – ген

ОБЕСПЕЧЕНИЕ электробезопасности
При коммутации электрических цепей (включении, выклю­чении электроприемников) возникает либо искровой разряд, либо дуга между расходящимися контактами. Во взрывоопасной атмо­сфере ( в угольной шахт

Контроль изоляции электрических сетей. Реле утечки
  Однофазное короткое замыкание в сети с изолированной нейтралью может ос­таться незамеченным, поскольку ток замыкания небольшой. Однако незамеченное и вовремя не отключенное однофазн

Назначение защитного отключения
Назначение защитного отключения - обеспечение автоматического отключения элек­троустановки при возникновении в ней опасности поражения чело­века током. Меры защиты – быстрое отключение участка сети

Устройства, реагирующие на ток замы­кания на землю
При возникновении опасных напряжений на корпусе электроустановки (рис.72) возникает ток утечки, срабатывает реле тока РТ, включенное между корпусом и землей, размыкает свой нормально замкнутый конт

Полупроводниковые диоды
Полупроводниковым диодом называют двухэлектродный полупроводниковый прибор, содержащий один электронно-дырочный p-n переход. По конструктивному исполнению полупроводниковые диоды разделяют

Иногда рассматривается коэффициент обратной связи по напряжению
Величина h12 » 2×10-3-2×10-4

Интегральные микросхемы
Интегральная микросхема – микроэлектронное изделие, содержащее не менее пяти активных элементов (транзисторов, диодов) и пассивных элементов (резисторов, конденсаторов, дросселей), которые и

Электронные усилители
  2.5.1.Общие сведения Электронным усилителем называют устройство, предназначенное для усиления напряжения, тока и мощности электрических сигналов.

Усилитель на биполярном транзисторе с общим эмиттером
Рассматриваемый усилитель (рис. 97) предназначен для усиления гармонических сигналов (сигналов синусоидальной формы) в диапазоне низких частот. Название такой схемы объясняется тем, что эмиттер зде

Дифференциальный коэффициент усиления ОУ определяется соотношением
при Uвх1 = const и Uвх2 = const,соотв

LC-автогенератор синусоидальных колебаний с индуктивной обратной связью
На рис. 105 показана упрощенная схема LC-автогенератора синусоидальных колебаний с индуктивной обратной связью. Она состоит из транзистора типа n-p-n, колебательного контура L

RC-автогенератор с двойным Т-образным мостом
Рассмотрим схему RC-автогенератора с двойным Т-образным мостом(рис. 106). На очень низких частотах, при w ® 0 коэффициент обратной связи b ® 1, так как сопротивления конденсаторов ста

Обозначения и таблицы истинности логических элементов
Операция “НЕ” или логическая операция отрицания означает, что при этой операции логическая функция Y противоположна аргументу X. Аналитически это может быть записано как

Интегральных микросхем
Для оценки качества логических интегральных микросхем используются их основные параметры и характеристики. К основным параметрам относятся: 1. Быстродействие - время реакции на из

RS-триггер
Асинхронные RS-триггеры являются простейшими и получили широкое распространение в импульсной и цифровой технике. В частности, они служат основой триггеров других типов и легко могут быть построены

Цифровые счетчики импульсов
Цифровые счетчики импульсов (ЦСИ) - это устройства, реализующие счет числа входных импульсов и фиксирующие это число в каком-либо коде. Обычно счетчики строят на основе триггеров (ч

Аналого-цифровые и цифро-аналоговые преобразователи
Цифро-аналоговый преобразователь (ЦАП) – устройство, предназначенное для преобразования цифрового кода в аналоговый сигнал. На рис. 114 представлена схема простейшего ЦАП. ЦАП представляет

Микропроцессор и микроЭВМ
Процессор – устройство, предназначенное для обработки информации по заданной программе. Микропроцессор – процессор, выполненный по интегральной технологии на одной или нескольких интегральных микро

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги