P-n-переход и его свойства

Действие полупроводниковых приборов основано на использовании свойств полупроводников. Полупроводники занимают промежуточное положение между проводниками и диэлектриками. К полупроводникам относятся элементы IV группы Периодической системы элементов Д.И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники – Ge (германий) и Si (кремний).

Чистые полупроводники кристаллизуются в виде решетки, рис. 75, а. Каждая валентная связь содержит два электрона, оболочка атома имеет восемь электронов, и атом находится в состоянии равновесия. Чтобы «вырвать» электрон в зону проводимости, необходимо затратить большую энергию.

Чистые полупроводники обладают высоким удельным сопротивлением (от 0,65 Ом×м до 108 Ом×м). Для снижения высокого удельного сопротивления чистых полупроводников в них вводят примеси, такой процесс называется легированием, а соответствующие полупроводниковые материалы легированными. В качестве легирующих примесей применяют элементы III и V групп Периодической системы элементов Д.И. Менделеева.

 
 

 

 


Элементы III группы имеют три валентных электрона, поэтому при образовании валентных связей одна связь оказывается только с одним электроном, рис. 75, б. Такие полупроводники обладают дырочной электропроводностью, так как в них основными носителями заряда являются дырки. Под дыркой понимается место незанятое электроном, которому присваивается положительный заряд. Такие полупроводники также называются полупроводниками p-типа, а примесь, благодаря которой в полупроводнике оказался недостаток электронов, называется акцепторной.

Элементы V группы имеют пять валентных электронов, поэтому при образовании валентных связей один электрон оказывается лишним, рис. 75, в. Такие полупроводники обладают электронной электропроводностью, так как в них основными носителями заряда являются электроны. Они называются полупроводниками n-типа, а примесь, благодаря которой в полупроводнике оказался избыток электронов, называется донорной.

Удельное электрическое сопротивление легированного полупроводника существенно зависит от концентрации примесей. При концентрации примесей 1020 ¸ 1021 на 1 см3 вещества оно может быть снижено до 5×10-6 Ом×м для германия и 5×10-5 Ом×м для кремния.

Основное значение для работы полупроводниковых приборов имеет электронно-дырочный переход, которыйназывают p-n-переходом (область на границе двух полупроводников, один из которых имеет дырочную, а другой – электронную электропроводность).

На практике p-n-переход получают введением в полупроводник дополнительной легирующей примеси. Например, при введении донорной примеси в определенную часть полупроводника p-типа в нем образуется область полупроводника n-типа, граничащая с полупроводником p-типа.

Схематически образование p-n-перехода при соприкосновении двух полупроводников с различными типами электропроводности показано на рис. 76. До соприкосновения в обоих полупроводниках электроны, дырки, ионы были распределены равномерно, рис. 76, а.

При соприкосновении полупроводников в пограничном слое происходит рекомбинация (воссоединение) электронов и дырок. Свободные электроны из зоны полупроводника n-типа занимают свободные уровни в валентной зоне полупроводника p-типа. В результате вблизи границы двух полупроводников образуется слой, лишенный подвижных носителей заряда и поэтому обладающий высоким удельным сопротивлением, - так называемый запирающий слой рис. 76, б. Толщина запирающего слоя l обычно не превышает нескольких микрометров.

 
 

 

 


Рис. 76. Образование p-n-перехода: распределение носителей заряда в полупроводниках с различными типами электропроводности до соприкосновения (а); после соприкосновения (б)

 

Расширению запирающего слоя препятствуют неподвижные ионы донорных и акцепторных примесей, которые образуют на границе полупроводников двойной электрический слой. Этот слой определяет контактную разность потенциалов Δjк на границе полупроводников, рис. 77. Возникшая разность потенциалов создает в запирающем слое электрическое поле напряженностью Eзап, препятствующее как переходу электронов из полупроводника n-типа в полупроводник p-типа, так и переходу дырок в полупроводник n-типа. В тоже время электроны могут свободно двигаться из полупроводника p-типа в полупроводник n-типа, как и дырки из полупроводника n-типа в полупроводник p-типа. Таким образом, контактная разность потенциалов препятствует движению основных носителей заряда и не препятствует движению неосновных носителей заряда. Однако при движении через p-n-переход неосновных носителей (дрейфовый ток Iдр) происходит снижение контактной разности потенциалов, что позволяет некоторой части основных носителей, обладающих достаточной энергией, преодолеть потенциальный барьер, обусловленный контактной разностью потенциалов. Появляется диффузионный ток Iдиф, который направлен навстречу дрейфовому току Iдр, то есть возникает динамическое равновесие, при котором Iдр= Iдиф.

 
 

 


Если к p-n-переходу приложить внешнее напряжение Uобр, которое создает в запирающем слое электрическое поле напряженностью Евн, совпадающее по направлению с полем неподвижных ионов напряженностью Езап, рис. 78, а, то это приведет к расширению запирающего слоя, так как носители заряда уйдут от контактной зоны. При этом сопротивление p-n-перехода велико, ток через него мал, так как обусловлен движением неосновных носителей заряда. В этом случае ток называют обратным Iобр, а p-n-переход – закрытым.

При противоположной полярности источника напряжения, рис. 78, б внешнее поле направлено навстречу полю двойного электрического слоя, толщина запирающего слоя уменьшается. Сопротивление p-n-перехода резко снижается и возникает сравнительно большой ток. В этом случае ток называют прямым Iпр, а p-n-переход – открытым.

На рис. 79 показана вольт-амперная характеристика p-n-перехода. Пробой p-n-перехода связан с тем, что при движении через p-n-переход под действием электрического поля неосновные носители заряда приобретают энергию, достаточную для ударной ионизации атомов полупроводника. В переходе начинается лавинообразное размножение носителей заряда, что приводит к резкому увеличению обратного тока через p-n-переход при почти неизменном обратном напряжении. Этот вид электрического пробоя называют лавинным. Обычно он развивается в относительно широких p-n-переходах, которые образуются в слаболегированных полупроводниках.

 
 

 

 
 

 


В сильнолегированных полупроводниках ширина запирающего слоя меньше, что препятствует возникновению лавинного пробоя, так как движущиеся носители не приобретают энергии, достаточной для ударной ионизации. В таких полупроводниках возможно возникновение эффекта Зенера, когда при достижении критической напряженности электрического поля в p-n-переходе за счет энергии поля появляются пары носителей электрон – дырка, и существенно возрастает обратный ток p-n-перехода.

для электрического пробоя характерна обратимость, заключающаяся в том, что первоначальные свойства p-n-перехода полностью восстанавливаются, если снизить напряжение на p-n-переходе. Благодаря этому электрический пробой используют в качестве рабочего режима в полупроводниковых диодах.

Если температура p-n-перехода возрастает в результате его нагрева обратным током и недостаточного теплоотвода, то усиливается процесс генерации пар носителей заряда. Это приводит к дальнейшему увеличению обратного тока и нагреву p-n-перехода, что может вызвать разрушение перехода. Такой процесс называют тепловым пробоем. Тепловой пробой разрушает p-n-переход.

В сильнолегированных полупроводниках может возникать квантово-механический туннельный эффект, который состоит в том, что при очень малой толщине запирающего слоя основные носители могут преодолевать запирающий слой без изменения энергии, что приводит к возрастанию тока на этих участках.

Закрытый p-n-переход обладает электрической емкостью, которая зависит от его площади и ширины, а также от диэлектрической проницаемости запирающего слоя.

Свойства p-n-перехода широко используются в полупроводниковых приборах.