Полупроводниковые диоды

Полупроводниковым диодом называют двухэлектродный полупроводниковый прибор, содержащий один электронно-дырочный p-n переход.

По конструктивному исполнению полупроводниковые диоды разделяются на плоскостные и точечные. Плоскостные диоды представляют собой p-n-переход с двумя металлическими контактами, присоединенными к p- и n- областям. В точечном диоде вместо плоской используется конструкция, состоящая из пластины полупроводника и металлического проводника в виде острия. При сплавлении острия с пластиной образуется микропереход. По сравнению с плоскостным диодом падение напряжения на точечном в прямом направлении очень мало, ток в обратном направлении значительно меняется в зависимости от напряжения. Точечные диоды обладают малой межэлектродной емкостью.

Рассмотрим некоторые группы полупроводниковых диодов.

Выпрямительный полупроводниковый диод используется для выпрямления переменного тока.

Типичная вольт-амперная характеристика выпрямительного диода подобна характеристике, представленной на рис. 79. Основным свойством выпрямительного диода является большое различие сопротивлений в прямом и обратном направлениях, что обуславливает вентильные свойства выпрямительного диода, т.е. способность пропускать ток преимущественно в одном (прямом) направлении. Электрические параметры выпрямительного диода: прямое напряжение Uпр, которое нормируется при определенном прямом токе Iпр; максимально допустимый прямой ток Iпр max; максимально допустимое обратное напряжение Uобр max; обратный ток Iобр, который нормируется при определенном обратном напряжении Uобр; межэлектродная емкость, сопротивление постоянному и переменному току.

Полупроводниковый стабилитронполупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока.

Вольт-амперная характеристика стабилитрона приведена на рис. 80.

Как видно, в области пробоя напряжение на стабилитроне Uст лишь незначительно изменяется при больших изменениях тока стабилизации Iст.

Основные параметры стабилитрона: напряжение на участке стабилизации Uст; динамическое сопротивление на участке стабилизации Rд=dUст/dIст; минимальный ток стабилизации Iст min; максимальный ток стабилизации Iст max; температурный коэффициент напряжения на участке стабилизации ТКU=(dUст/dТ)×100.

Стабилитроны используются для стабилизации и ограничения напряжения, а также в качестве источника опорного (эталонного) напряжения в прецизионной измерительной технике.

 

     
 
 
 
Рис. 80. Вольт-амперная характеристика стабилитрона

 

 


Туннельный диод – это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через p-n-переход. Характеристика туннельного диода имеет область отрицательного сопротивления, т. е. область, в которой положительному приращению напряжения соответствует отрицательное приращение тока (пунктирная линия на рис. 79).

Варикап– полупроводниковый диод, в котором используется зависимость емкости p-n-перехода от обратного напряжения, который предназначен для применения в качестве элемента с электрически управляемой емкостью.

Фотодиодполупроводниковый диод, в котором в результате освещения p-n-перехода повышается обратный ток.

Светодиод-полупроводниковый диод, в котором в режиме прямого тока в зоне p-n-перехода возникает видимое или инфракрасное излучение.

фотодиоды используются в солнечных батареях, применяемых на космических кораблях и в южных районах земного шара. светодиоды находят применение для индикации в измерительных приборах, в наручных часах, микрокалькуляторах и других приборах.

Условные графические обозначения рассмотренных полупроводниковых диодов представлены на рис. 81.

 

     
 
 
 
Рис.81. Условные графические обозначения полупроводниковых диодов: а – вентильного диода; б – стабилитрона; в – туннельного диода; г – варикапа; д – фотодиода; е - светодиода

 


2.2.3.Биполярные транзисторы

Транзистором называют трехэлектродный полупроводниковый прибор, служащий для усиления мощности электрических сигналов. Кроме усиления транзисторы используют для генерирования сигналов, их различных преобразований и решения других задач электронной техники.

Различают два типа транзисторов: биполярные и полевые (униполярные). Название биполярного транзистора объясняется тем, что ток в нем определяется движением носителей зарядов двух знаков – отрицательных и положительных (электронов и дырок). Термин же транзистор происходит от английских слов transfer – переносить и resistor – сопротивление, т.е. в них происходит изменение сопротивления под действием управляющего сигнала.

На рис. 82 показана структура такого транзистора и его обозначение на схемах.

Биполярный транзистор состоит из трех слоев полупроводников типа «p» и «n», между которыми образуются два p-n-перехода. В соответствии с чередованием слоев с разной электропроводностью биполярные транзисторы подразделяют на два типа: p-n-p, рис. 82, а и n-p-n , рис. 82, б. У транзистора имеются три вывода (электрода): эмиттер (э), коллектор (к) и база (б). Эмиттер и коллектор соединяют с крайними областями (слоями), имеющими один и тот же тип проводимости, база соединяется со средней областью. Напряжение питания подают таким образом, чтобы на переход эмиттер – база было подано напряжение в прямом направлении, а на переход база – коллектор в обратном направлении.

 
 

 


По диапазонам используемых частот транзисторы делятся на низкочастотные (до 3МГц), среднечастотные (от 3 до 30 МГц), высокочастотные (от 30 до 300 МГц) и сверхвысокочастотные (свыше 300 МГц). По мощности транзисторы делятся на малой мощности (до 0,3Вт), средней мощности (от 0,3Вт до 1,5Вт), большой мощности (свыше 1,5Вт).

При подключении эмиттера транзистора типа p-n-p к положительному зажиму источника питания возникает эмиттерный ток Iэ рис. 83. Стрелкой указано движение носителей заряда. Дырки преодолевают переход и попадают в область базы, для которой дырки не являются основными носителями заряда. Дырки частично рекомбинируют с электронами базы. Так как напряжение питания коллектора во много раз (приблизительно в 20 раз) больше, чем напряжение питания базы, и конструктивно слой базы выполняется очень тонким, то электрическое сопротивление цепи базы получается высоким и ток, ответвляющийся в цепь базы Iб, оказывается незначительным. Большинство дырок достигают коллектор, образуя коллекторный ток Iк.

Таким образом, можно записать

где a - коэффициент передачи тока, практически a @ 0,95¸0,995.

 

       
   
 
 
Рис. 83. Принцип действия биполярного транзистора

 

 


Ток коллектора Iк превосходит ток базы Iб от 20 до 200 раз. Это объясняет возможность усиления с помощью транзистора тока и, соответственно, мощности сигнала во много раз. Действительно, если подавать напряжение сигнала в цепь базы, то в соответствии с напряжением сигнала будет изменяться сопротивление p-n-перехода между эмиттером и базой. Это изменяющееся сопротивление включено в коллекторную цепь, что приведет к соответствующему изменению тока коллектора, который во много раз больше тока базы.

Если в коллекторную цепь включить сопротивление нагрузки, в нем будет выделяться мощность, во много раз бóльшая, чем мощность сигнала, подводимого в цепь базы. При этом следует иметь в виду, что мощность сигнала усиливается за счет энергии источников питания.

Принцип действия транзистора типа n-p-n точно такой же, как у рассмотренного выше транзистора p-n-р.

Вольт-амперные характеристики транзистора отличаются в зависимости от схемы его включения: с общим эмиттером (ОЭ), собщей базой (ОБ) или с общим коллектором (ОК), рис. 84.

       
 
 
   
Рис. 84. схемы включения транзистора: а) с общим эмиттером; б) с общей базой; в) с общим коллектором

 

 


Различают следующие основные вольт-амперные характеристики транзистора:

1. Входная - зависимость входного тока от входного напряжения при постоянном выходном напряжении

2. Семейство выходных характеристик - зависимость выходного тока от выходного напряжения при разных (фиксированных) значениях входного тока

 

 

На рис. 85 представлены вольт-амперные характеристики биполярного транзистора, включенного по схеме с общим эмиттером.

 

 

В наиболее распространенных транзисторах небольшой мощности ток базы составляет десятки или сотни микроампер, напряжение на базе изменяется от нуля до нескольких десятых долей вольта. Коллекторный ток на выходных характеристиках транзисторов небольшой мощности изменяется от нуля до единиц или десятков миллиампер, напряжение на коллекторе – от нуля до одного-двух десятков вольт.

Свойства транзисторов характеризуются их параметрами, с помощью которых можно сравнивать качество транзисторов, решать задачи, связанные с применением транзисторов в различных схемах, и рассчитывать эти схемы.

h-параметры транзистора определяют, рассматривая транзистор как четырехполюсник, т.е. прибор, имеющий два входных и два выходных зажима. Они связывают входные и выходные переменные токи и напряжения, справедливы только для нормального режима работы транзистора и малых амплитуд сигналов и могут быть определены экспериментально или по входной и выходным характеристикам.

h-параметры транзистора, включенного по схеме с общим эмиттером:

Входное сопротивление транзистора (между базой и эмиттером) для переменного тока

Для маломощных транзисторов h11 = 1000¸10000 Ом; для транзисторов средней и большой мощности – h11 = 50¸1000 Ом.

Коэффициент усиления по току

Этот коэффициент изменяется от 20 до 200.