рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Метод контурных токов

Метод контурных токов - раздел Философия, Основы электротехники и электроники Метод Основан На 2-М Законе Кирхгофа. При Его Использовании В Составе Анализи...

Метод основан на 2-м законе Кирхгофа. При его использовании в составе анализируемой схемы выбирают независимые контуры и предполагают, что в каждом из контуров течет свой контурный ток. Для каждого из независимых контуров составляют уравнение по 2-му закону Кирхгофа и их решают. Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих по данной ветви.

Все источники сигналов, представленные источниками тока, заменяют источниками ЭДС (рис. 4.29).

Эта схема эквивалентна, если

а) E = IZiI;

б) ZiII = ZiI.

1) Топологический анализ схемы.

а) Как и в предыдущем методе, определяют число ветвей b.

б) Определяют число узлов у.

в) Подсчитывают число независимых контуров Nk = b – y + 1.

Все независимые контуры обозначены дугами со стрелками на них, которые показывают положительное направление обхода.

Все контуры нумеруют и каждому контуру присваивают свой контурный ток: Ik1; Ik2; IkNk.

За положительное направление контурного тока принимают положительное направление обхода контура.

2) По второму закону Кирхгофа относительно контурных токов записывают уравнения, которые после приведения подобных членов образуют систему линейных уравнений Nk = Nk порядка:

где Iki – контурный ток i-го контура;

Zii – собственное сопротивление i-го контура и равно алгебраической сумме сопротивлений, входящих в i-й контур;

Zji – сопротивление смежных ветвей между i-м и j-м контурами. Оно представляет собой алгебраическую сумму, причем ее члены берутся со знаком «+», если контурные токи направлены одинаково, и со знаком «–», если они направлены встречно;

Eki – контурная ЭДС i-ого контура. Она равна алгебраической сумме ЭДС, входящих в i-й контур. Контурная ЭДС Eki берется со знаком «+», когда направление источника ЭДС и направление тока совпадают, и со знаком «–», если они направлены встречно.

3) По правилу Крамера находят контурные токи Iki=.

4) Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих через данную ветвь. В алгебраической сумме контурные токи берутся со знаком «+» , если ток ветви и совпадает с контурным током и «–» если не совпадает.

Если токи ветви оказались положительными, то выбранное направление тока совпадает с истинным и наоборот.

Пример. Дана комплексная схема замещения электрической цепи (рис. 4.30). Определить токи во всех ветвях.

1. Проводим топологический анализ

а) b = 6; б) y = 4; в) Nk = 6 – 4 + 1=3.

2) Составим систему уравнений по методу МКТ

где:

E11= E1; E22 = 0; E33 = 0.

3) По методу Крамера находим контурные токи Iki = .

4) Находим токи в ветвях: I1 = Ik1; I2 =
= Ik
1 Ik2; I3 = Ik1 Ik3; I4 = –Ik2 + Ik3; I5 = Ik2; I6 = Ik3.

Пример 2. Рассмотрим электрической цепи постоянного тока, рис. 2.21.

1. Проводим топологический анализ

а) b = 5; б) y = 3; в) Nk = 5 – 3 + 1=3.

2) Для каждого контура записывают уравнение второго закона Кирхгофа,


Рис. 2.21. – Расчетная схема для метода контурных токов

В каждом из трех контуров протекает свой контурный ток J1, J2, J3. Произвольно выбираем направление этих токов, например, по часовой стрелке. Составляем уравнения по второму закону Кирхгофа для каждого контура с учетом соседних контурных токов, протекающих по смежным ветвям

(R1 + R2J1 - R2·J2 = E2 - E1

- R2·J1 + (R2 + R3 + R4J2 - R3·J3 = - E2 - E3

- R3·J2 + (R3 + R5J3 = E3.

Решив систему уравнений, находят контурные токи J1, J2, J3. Затем определяют реальные токи в ветвях, причем токи во внешних ветвях равны контурным, а в смежных – алгебраической сумме 2-х контурных токов, протекающих в данной ветви

I1 = J1; I2 = J2 - J1; I3 = J2 - J3; I4 = J2; I5 = J3.

Исходная система уравнений в матричной форме

или

[R]·[J] = [E],

где [R] – квадратная матрица коэффициентов контурных токов;

[J] – матрица – столбец контурных токов; [E] – матрица – столбец ЭДС.

Решением матричного уравнения является матрица

[J] = [R]-1 ·[E],

где [R]-1 – матрица, обратная матрице [R]

• Пример 3. Для электрической цепи, схема которой приведена на рис. 1.1, получим следующие уравнения:

получим следующие уравнения:

 
 

 

 


По методу Крамера найдем контурные токи:

 

Действительные токи в ветвях: I1 = Ik1; I2 = Ik2 – Ik1; I3 = Ik2.

Пример 4. Расчет цепи методом контурных токов на рис. 2.22.


Рис. 2.22. – Расчет цепи методом контурных токов

Для схемы замещения электрической цепи, показанной на рис. 2.22, задано: E1 = 30 B; E2 = 10 В; R1 = 8 Ом; R2 = 15 Ом; R3 = 36 Ом. Требуется определить токи в ветвях методом контурных токов. Составить баланс мощности.

Схема содержит три ветви (m = 3), два узла (n = 2). Выбираем положительные направления токов в ветвях произвольно. Число уравнений, составленных по методу контурных токов, равно m - (n - 1) = 2. Задаем направление контурных токов (например, по часовой стрелке) и составляем систему уравнений

(R1 + R2J1 - R2·J2 = E1 - E2

- R2·J1 + (R2 + R3J2 = E2.

Подставляя численные значения сопротивлений резисторов и ЭДС в приведённые уравнения, находим контурные токи J1, J2 (Например, методом определителей)

20 = 23·J1 – 15·J2

10 = - 15·J1 + 51·J2

Токи в ветвях

I1 = J1 = 1,23 А; I2 = - J2 + J1 = 1,23 - 0,56 = 0,67 А; I3 = J2 = 0,56 А.

Составляем баланс мощностей.

Мощность генераторов (источников)

РИ = Е1·I1 - Е2·I2 = 30·1,23 – 10·0,67 = 30,2 Вт,

где произведение Е2·I2 имеет знак минус (ток через источник не совпадает с ЭДС, значит источник ЭДС работает в режиме потребителя электрической энергии).

Мощность, потребляемая нагрузкой, составляет

РН = R1·I12 + R2·I22 + R3·I32 = 8·1,232 + 15·0,562 + 36·0,562 = 30,13 Вт.

Погрешность

составляет менее 1%, т. е. токи найдены верно.

 

Метод узловых потенциалов (МУП)

Метод основан на применении первого закона Кирхгофа. В нем за неизвестные величины принимают потенциалы узлов. По закону Ома определяют токи во всех ветвях схемы.

Все источники ЭДС, имеющиеся в схеме, заменяют источниками тока (рис. 4.31).

а) I = E/ZiI;

 

б) ZiII = ZiI.

1) Топологический анализ.

а) Подсчитывают число ветвей b и число узлов y. Определяется количество независимых узлов Ny = y – 1.

б) Нумеруют все узлы. Один из узлов, к которому сходится наибольшее число ветвей, считают нулевым, где – потенциал нулевого узла.

2) По 1-му закону Кирхгофа составляют уравнения для N узлов схемы и решают их относительно потенциалов узлов:

,

где Yii – собственная узловая проводимость. Она равна сумме проводимостей всех ветвей, сходящихся в i-м узле, все они берутся со знаком «+»;

Yij – межузловая проводимость между i-м и j-м узлами. Проводимости всех узлов берутся со знаком «–»;

Iii – алгебраическая сумма токов источников тока, сходящихся в i-м узле. Втекающие токи записываются в эту сумму со знаком «+», а вытекающие – со знаком «–».

3) Потенциалы узлов находят по формуле Крамера

.

4) Токи в ветвях находят по закону Ома

I = (j1 – j2)/Z.

Пример. Дана электрическая цепь (рис. 4.32). Рассчитать токи во всех ветвях.

Z2
I2
Предварительно преобразуем все источники напряжения (рис. 4.32) в источники тока (рис. 4.33).

Z4
Z3
Z1
I1
I3
I
I
I4
I2
I1
E2
E1
Z4
Z3
Z2
Z1

Рис. 4.32 Рис. 4.33

 

Проведем топологический анализ.

а) число ветвей b = 4;

б) число независимых узлов Nу = 2, их потенциалы: φ1 и φ2 (рис. 4.33).

Составим систему уравнений по методу узловых потенциалов:

;

.

По методу Крамера найдем потенциалы узлов .

По закону Ома найдем токи во всех ветвях схемы:

.

 


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ ЗАДАНИЙ по теме цепи переменного тока

– Конец работы –

Эта тема принадлежит разделу:

Основы электротехники и электроники

ЧОУ ВПО ИНСТИТУТ ЭКОНОМИКИ УПРАВЛЕНИЯ И ПРАВА г КАЗАНЬ... Факультет менеджмента и маркетинга...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Метод контурных токов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ОБЩИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ
Индивидуальное задание составлено для 100 вариантов. Вариант задания определяется двумя последними цифрами номера студенческого билета mn: где m – предпоследняя, n – последняя.

Электрические машины постоянного и переменного тока.
1.5.3. Основы электропривода. Основы электробезопасности и энергосбережения Тема 1.1. Электрические и магнитные цепи. Общие сведения об электрических целях: опред

Тема 1.2. Электрические цепи однофазного переменного тока.
Параметры и формы представления переменного тока и напряжения. Активное сопротивление, индуктивность и емкость в цепи переменного тока. Временные и векторные диаграммы токов и напряжений. Использов

Трехфазный электрические цепи переменного тока.
Общие сведения о трехфазных электрических цепях. Сведение обмоток трехфазного генератора и потребителей звездой и треугольником. Симметричная и несимметричная нагрузка. Трехпроводная и четырехпрово

Трансформаторы
Назначение трансформаторов, их классификация. Вклад Русских ученых Н.Н. Яблочкова и М.О. Доливо-Добровольского в создании и использовании трансформаторов. Однофазный трансформатор, его уст

Электрические машины постоянного и переменного тока.
Электрические машины переменного тока их назначение и классификация. Устройство трехфазного асинхронного электродвигателя. Получение вращающегося магнитного поля в трехфазных электродвигателях. При

Тема 2.1 Полупроводниковые приборы.
Электрофизические свойства полупроводников. Собственная и примесная проводимость. Электронно-дырочный переход и его свойства. Вольтамперная характеристика. Устройство и типы диодов, их применение.

Электронные выпрямители и стабилизаторы.
Выпрямители их назначение, классификация обобщенная структурная схема. Однофазные и трехфазные принципиальные схемы выпрямления, их принцип действия, соотношения между основными электрическими вели

Законы Кирхгофа
Согласно первого закона Кирхгофа алгебраическая сумма токов в любом узле электрической цепи равна нулю ∑I = 0. Поскольку речь идет об алгебраической сумме &

Расчет разветвленной электрической цепи с одним источником энергии
При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС, сопротивления элементов электрической цепи. Задача расчета электрической цепи сводится к определению токов в

Метод токов ветвей
• В общем случае токи сложной электрической цепи могут быть определены в результате совместного решения уравнений, составленных по первому и второму законам Кирхгофа. Для однозначного нахождения вс

Метод непосредственного применения законов Кирхгофа
Пример . Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис. Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления ток

Методические указания к решению задач 3 и 4. .
  В результате изучения темы «Электрические цепи синусоидального тока» слушатель должен: знать содержание терминов: резистор, сопротивление, индуктивная катушка, индуктивност

Комплексное сопротивление элемента (участка цепи)
Под комплексным сопротивлением понимают отношения комплексной амплитуды входного напряжения к комплексной амплитуде входного тока:

Решение
Определяем комплексные сопротивления параллельных ветвей. Сопротивление первой ветви Z1 = R1 + jXL

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
Самостоятельная работа студентов состоит в изучении ряда теоретических вопросов по темам дисциплины, перечень которых приведен в таблице 5 и составления рефератов..   Таблица

Электронно-дырочный переход
Принцип действия большинства полупроводниковых приборов основан на явлениях, происходящих на границе двух полупроводников с различными видами проводимости. Электронно-дырочный переход или р

Источники вторичного электропитания
Источники вторичного электропитания (ИВЭП) предназначены для получения напряжения, необходимо для питания различных электронных устройств. Действующее значение напряжения сети переменного тока сост

Основные схемы сглаживающих фильтров питания
1. Ёмкость 2. Г-образный 3. Т-образный 4. П-образный

Порядок расчета выпрямителя напряжения
Точный аналитический расчет выпрямителей представляет определенные трудности, в связи с тем, что полупроводниковые приборы, применяемые в качестве преобразователей переменного напряжения в постоянн

Действующий ток вторичной обмотки
I2 = 0,707 DI0 = 0,707·2,1·7 = 10,39 A. Коэффициент трансформации km = U1/U2 . km = U

Амплитудное значение тока диода
IВ.макс = 0,5FI0 = 0,5·4·7 = 14 A. Число диодов 4. Для данного выпрямителя можно использовать диоды типа Д305, имеющие

Расчет емкости конденсатора фильтра
. Выбираем электролитический конденсатор типа с рабочим напряжением 20 В и емкостью 80

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги